三氟甲基取代的吡唑烷及吡唑啉类化合物的合成
English
A Facile Synthesis of CF3-Substituted Pyrazolidines and Pyrazolines
-
1. Introduction
Pyrazolidine and pyrazoline compounds are highly valuable hereocycles existing in many natural products and bioactive compounds.[1] Many their derivatives exhibit remarkable biological and pharmacological activities such as antitumor, [2] antidepressant, [3] anticonvulsant, [4] antimicrobial, [5] analgesic[6] and anesthetic[7] activities as well as acyltransferase inhibitors.[8] Some of them have also shown potential application in material science due to their attractive photophysical properties.[9]
In addition, the incorporation of trifluoromethyl groups into organic molecules can lead to great changes in their physicochemical and biological propeties, such as enhanced binding affinity, lipophilicity, metabolic stability, bioavailability and so on.[10] Thus, trifluoromethylated heterocycles have been widely applied in pharmaceutical chemistry, agrochemistry, and materials science.[11] Among them, CF3-substituted pyrazolines have already been proven to be highly bioactive (Figure 1).[12] However, there have been no reports on the bioactivity investigation of CF3-substituted pyrazolidines till now, and the synthetic methods for CF3-substituted pyrazolidines are formidable scarce in literature.[13] In our research works on fluorine chemistry, [14] we found that trifluoromethylated N-acyl- hydrazones are very stable towards air, heat and moisture, and could be easily prepared from commercially available aqueous trifluoroacetaldehyde methyl hemiacetal and N-acylhydrazons. Hence, we tried to develop them into useful trifluoromethyl building blocks for the synthesis of CF3-substituted heterocyles. In our previous works, we found that trifluoromethylated N-acylhydrazones could act as 1, 3-dipolars to conduct [3+2] cycloaddition reactions with electron-deficient nitrolefins under basic conditions to produce trifluoromethylated pyrazolidines in good yields.[13a] To further extend their application, we found that the trifluoromethylated N-acylhydrazones could also react with electron-rich olefins catalyzed by Lewis acid to give CF3-substituted pyrazolidines in high yields. The pyrazolidines obtained can be further transformed into tri- fluoromethylated pyrazolines. This method is complementary to our previous basic one.
Figure 1
2. Results and discussion
We examined the reaction of N'-(2, 2, 2-trifluoroethylene)- benzohydrazide (1a) and cyclopentadiene (2) catalyzed by BF3·OEt2 in CH2Cl2 at room temperature. To our delight, the [3+2] cycloaddition of 1a and 2 really occurred and the products syn-3a and anti-3a were obtained in total yield of 90% albeit with only 63:37 diastereomer ratio (Table 1, Entry 1). The relative configuration of 3a was determined by single-crystal X-ray analysis. Encouraged by this result, different solvents such as dichloroethane (DCE), tetrahydrofuran (THF), 1, 4-dioxane and toluene were screened, and it was found that DCE and CH2Cl2 were beneficial to the reaction (Table 1, Entries 2~5). Next, the effect of temperature on the reaction was examined in CH2Cl2. The yield of the product 3a was reduced greatly whether increasing the temperature or reducing the temperature, and the stereoselectivity of the reaction was neither improved (Table 1, Entries 6~8). Moreover, screening of various Lewis acids, such as Ni(ClO4)2·6H2O, AlCl3, Sc(OTf)3, Fe(OTf)2, Cu(OTf)2, AgOTf, and protonic acid TfOH, indicated that Cu(OTf)2 was the suitable one, which improved the diastereoselectivity of the product to 72:28 and the total yield is up to 91% (Table 1, Entries 9~15). Finally, effect of catalyst loading on the reaction was examined. When 20 mol% catalyst was used, the yield and diastereoselectivity of 3a were not improved, but the yield of the product 3a sharply decreased to 20% when the amount of the catalyst decreased to 5 mol% (Table 1, Entries 16 and 17). Thus, 10 mol% Cu(OTf)2 was determined to be the suitable choice.
Table 1

Entry Mole ratio of 1a:2:Lewis acid Lewis acid Solvent Temp./℃ Total yieldb/% dr (syn/anti)c 1 1:2:0.1 BF3·OEt2 CH2Cl2 r.t. 90 62/38 2 1:2:0.1 BF3·OEt2 (CH2Cl)2 r.t. 90 61/39 3 1:2:0.1 BF3·OEt2 THF r.t. 62 55/45 4 1:2:0.1 BF3·OEt2 1, 4-Dioxane r.t. 42 59/41 5 1:2:0.1 BF3·OEt2 Toluene r.t. 44 69/31 6 1:2:0.1 BF3·OEt2 CH2Cl2 Reflux 65 65/35 7 1:2:0.1 BF3·OEt2 CH2Cl2 0 37 58/42 8d 1:2:0.1 BF3·OEt2 CH2Cl2 -10 17 68/32 9 1:2:0.1 Ni(ClO4)2·6H2O CH2Cl2 r.t. n.r.e — 10 1:2:0.1 AlCl3 CH2Cl2 r.t. n.r.e — 11 1:2:0.1 Sc(OTf)3 CH2Cl2 r.t. 47 71/29 12 1:2:0.1 Cu(OTf)2 CH2Cl2 r.t. 91 72/28 13 1:2:0.1 Fe(OTf)2 CH2Cl2 r.t. 28 46/54 14 1:2:0.1 AgOTf CH2Cl2 r.t. 84 60/40 15 1:2:0.1 TfOH CH2Cl2 r.t. 85 58/42 16 1:2:0.2 Cu(OTf)2 CH2Cl2 r.t. 81 71/29 17 1:2:0.05 Cu(OTf)2 CH2Cl2 r.t. 20 70/30 a Reaction conditions: 1a (0.4 mmol), 2 (0.8 mmol), Lewis acid (10 mol%, 0.04 mmol), solvent (5 mL). b Isolated yield. c Diastereomer ratio was determined by 1H NMR spectroscopic analysis of the crude reaction mixture. d 72 h. e n.r.=no reaction, 1a was recovered. With the optimized reaction conditions in hand, the substrate scope was then investigated. Firstly, various trifluoromethylated N-acylhydrazones were examined. As shown in Table 2, most of the aromatic trifluoromethylated N-acylhydrazones with either electron-withdrawing or electron-donating groups on the phenyl ring could react with cyclopentadiene to give the corresponding pyrazolidine products 3c~3j in good yields (Table 2, Entries 3~10). However, the positions of the substituents on phenyl ring had an obvious effect on the reaction. In general, when the substituents were at para- or meta-position, the reaction proceeded smoothly, and the para-substituted aromatic N-acylhydrazones gave the products in higher yields than the meta-substituted ones (Table 2, Entries 3 and 4, 6 and 7). However, when the substituents were at ortho-position, no reactions occurred (Table 2, Entries 2 and 5). In addition, trifluoromethylated N-acylhydra- zones derived from 2-naphthohydrazide and furan-2-car- bohydrazide could also be applied in the reaction to afford the corresponding products 3k and 3l in 73% and 75% yields, respectively (Table 2, Entries 11 and 12). In addition, changing aromatic N-acylhydrazones to aliphatic N-acylhydrazones provided the corresponding products 3m and 3n in good yields (Table 2, Entries 13 and 14). However, the ketone-derived N-acylhydrazones such as 2, 2, 2- trifluoroacetophenone-derived N-acylhydrazone could not afford the corresponding product, and only substrates were recovered (Table 2, Entry 15).
Table 2

Entry R1 R2 Product Total yieldb/% dr (syn/anti)c 1 H Ph (1a) 3a 91 72/28d 2 H 2-CH3C6H4 (1b) 3b n.r.e — 3 H 3-CH3C6H4 (1c) 3c 55 66/34d 4 H 4-CH3C6H4 (1d) 3d 87 69/31d 5 H 2-ClC6H4 (1e) 3e n.r.e — 6 H 3-ClC6H4 (1f) 3f 62 79/21 7 H 4-ClC6H4 (1g) 3g 97 91/9 8 H 4-FC6H4 (1h) 3h 97 91/9 9 H 4–O2NC6H4 (1i) 3i 77 85/15 10 H 4-CH3OC6H4 (1j) 3j 92 84/16 11 H 2-Naphthyl (1k) 3k 73 87/13 12 H 2-Furyl (1l) 3l 75 85/15 13 H Benzyl (1m) 3m 87 76/24 14 H c-Hexyl (1n) 3n 89 87/13 15 Ph Ph (1o) 3o n.r.e — a Reaction conditions: 1 (0.4 mmol), 2 (0.8 mmol), Cu(OTf)2 (10 mol%, 0.04 mmol), CH2Cl2 (5 mL). b Isolated yields. c Determined by 1H NMR spectroscopic analysis of the crude reaction mixture. d Both isomers were isolated. e n.r.=no reaction, 1a was recovered. Other alkenes such as styrene, p-methylstyrene, p-me- thoxystyrene, p-chlorostyrene, o-chlorostyrene, m-chloro- styrene and α-methylstyrene were then tested, but only styrene 4 was suitable for the [3+2] cycloaddition to give the product 5 in 71% yield with 94/6 d.r. value (Eq. 1). The structure of 5 was determined by NOESY data of 5 (see Supporting Information).
(1) In order to further demonstrate the synthetic utility of the cycloaddition process, scale-up experiment and elaboration of CF3-substituted pryazolidine 3a were conducted.We found that when the molar ratio of trifluoromethyl acyl hydrazone to cyclopentadiene was 1:5, the cycloaddition can be readily scaled up on a gram scale with maintained efficiency (Eq. 2).
(2) The trifluoromethyl pyrazolidines obtained in the above [3+2] cycloaddition could be further transformed into trifluoromethylated pyrazoline derivatives 6 by oxidation reaction of C—N bond. As summarized in Table 3, trifluoromethylated pyrazolines were produced in excellent yields when pyrazolidines 3 or 5 were refluxed in ethanol in the presence of copper chloride.
Table 3


a Reaction conditions: 3 (0.1 mmol), CuCl2 (0.1 mmol), reflux in EtOH (5 mL) for 20 min. Isolated yield. Finally, the mechanism is proposed in Scheme 2 based on our experiments and literature.[15] Isomerization of trifluoromethylated N-acylhydrazones 1 gave two isomers A and B. The isomer B combined Cu(OTf)2 to form an intermediate 7, which reacted with 1, 3-cyclopentadiene to afford a plausible transition state structure 8. The transition state 8 generated the intermediate 9. Decomposition of intermediate 8 produced final product syn-3 and the catalyst Cu(OTf)2 (Scheme 2).
Scheme 2
3. Conclusions
In summary, we have developed a Cu(OTf)2-catalyzed [3+2] cycloaddition of trifluoromethylated N-acylhydra- zones and alkenes under mild conditions. In this process, stable and easily available trifluoromethylated N-acylhy- drazones were chosen as building blocks for the construction of CF3-substituted pryazolidine and pyrazoline derivatives, which provides a facile method to incoporate the CF3 group into heterocycles. Further studies on the use of trifluoromethylated N-acylhydrazones as trifluoromethyl building blocks for the syntesis of CF3-substituted heterocycles are currently underway in our laboratory.
4. Experimental section
4.1 Materials and methods
The solvents were distilled by standard methods. Reagents were obtained from commercial suppliers and used without further purification unless otherwise noted. Flash column chromatography was carried out using Qingdao silica Gel (230~400 mesh). Analytical thin layer chromatography (TLC) was done using Qingdao silica gel (silica gel GF254). TLC plates were analyzed by ultraviolet (UV) light. 1H NMR, 13C NMR spectra were recorded at 400 MHz or 600 MHz and 100 MHz or 150 MHz spectrome ters, respectively. 19F NMR spectra were recorded at 376 MHz spectrometers. Chemical shifts are reported as δ values relative to internal TMS (δ 0.00 for 1H NMR), chloroform (δ 7.26 for 1H NMR and 77.00 for 13C NMR). Melting points were uncorrected. The HRMS data were measured on a MALDI-TOF type of instrument for the high resolution mass spectra. Diastereomeric excesses of products were determined by 1H NMR spectroscopic analysis of the crude reaction mixture. The substrates 1a~1p were prepared according to literature procedures.[13]
4.2 General procedure for the synthesis of 3 and 5
The catalyst Cu(OTf)2 (0.1 equiv, 0.04 mmol) was added to the solution of trifluoromethyl acylhydrazone (1.0 equiv., 0.40 mmol) in dry CH2Cl2 (5.0 mL), and then freshly cracked cyclopentadiene or styrene (2.0 equiv., 0.80 mmol) was added to the mixture at room temperature and stirring was continued at the same temperature for 54 h. The saturated sodium bicarbonate solution (10 mL) was poured into the mixture and stirred for 10 min, and the mixture was extracted with CH2Cl2 (10 mL×3). The combined organic extracts were dried (MgSO4) and concentrated. CH2Cl2 was then removed under vacuum and the crude reaction mixture was directly loaded on a silica column. The column was eluted by using ether/acetone mixture to obtain pure racemic [3+2] cycloaddition products 3 and 5.
((3R, 3aS, 6aS)-3-Trifluoromethyl-2, 3, 3a, 4-tetrahydrocyc-lopenta[c]pyrazol-1(6aH)-yl)(phenyl)methanone (3a): White solid, 70.6 mg, total yield 91%, dr 72:28. m.p. 129~131 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.73 (d, J=6.0 Hz, 2H), 7.45~7.44 (m, 1H), 7.40~7.38 (m, 2H), 6.01 (s, 1H), 5.83 (s, 1H), 5.65 (br, 1H), 4.48 (br, 1H), 3.72 (s, 1H), 3.34 (s, 1H), 2.69 (d, J=18.0 Hz, 1H), 2.57~2.53 (m, 1H); 13C NMR (150 MHz, CDCl3) δ: 168.6, 135.2, 134.2, 130.7, 128.9, 127.7, 127.6, 123.8 (q, JC—F=279.0 Hz), 69.5, 64.1 (br), 42.1, 32.2; 19F NMR (376 MHz, CDCl3) δ: -72.68 (s); HRMS (ESI) calcd for C14H13- F3N2NaO [M+Na]+ 305.0872, found 305.0876.
((3R, 3aS, 6aS)-3-Trifluoromethyl-2, 3, 3a, 4-tetrahydrocyc-lopenta[c]pyrazol-1(6aH)-yl)(3-methylphenyl)methanone (syn-3c): White solid, 43.0 mg, total yield 55%, dr 66:34. m.p. 89~91 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.51~7.49 (m, 2H), 7.29~7.25 (m, 2H), 6.00 (s, 1H), 5.82 (s, 1H), 5.63 (br, 1H), 4.47 (br, 1H), 3.74~3.70 (m, 1H), 3.36~3.31 (m, 1H), 2.70 (d, J=18.0 Hz, 1H), 2.55 (dd, J=18.6 Hz, 9.6 Hz, 1H), 2.38 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 169.0, 137.6, 135.2, 134.2, 131.4, 129.4, 127.7, 127.6, 125.9, 123.9 (q, JC—F=277.5 Hz), 69.5, 64.1 (br), 42.2, 32.3, 21.3; 19F NMR (376 MHz, CDCl3) δ: -67.47 (s); HRMS (ESI) calcd for C15H15F3N2NaO [M+ Na]+ 319.1029, found 319.1038.
((3R, 3aR, 6aR)-3-Trifluoromethyl-2, 3, 3a, 4-tetrahydrocyc- lopenta[c]pyrazol-1-(6aH)-yl)(3-methylphenyl)methanone (anti-3c): White solid, 5.2 mg, yield 13%. m.p. 79~81 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.47 (s, 2H), 7.28~7.22 (m, 2H), 5.99 (m, 1H), 5.86 (s, 1H), 5.78 (s, 1H), 4.66 (s, 1H), 3.40 (s, 1H), 3.28 (t, J=7.8 Hz 1H), 3.90~3.86 (m, 1H), 2.40 (d, J=18.0 Hz, 1H), 2.36 (s, 3H); HRMS (ESI) calcd for C15H15F3N2NaO [M+Na]+ 319.1029, found 319.1024.
((3R, 3aS, 6aS)-3-Trifluoromethyl-2, 3, 3a, 4-tetrahydrocyc-lopenta[c]pyrazol-1(6aH)-yl)(4-methylphenyl)methanone (syn-3d): White solid, 71.1 mg, total yield 87%, dr 69:31. m.p. 139~141 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.65 (d, J=7.8 Hz, 2H), 7.20 (d, J=7.8 Hz, 2H), 6.01~6.00 (m, 1H), 5.83~5.82 (q, J=2.4 Hz, 1H), 5.65 (br, 1H), 4.55 (br, 1H), 3.74~3.61 (m, 1H), 3.35~3.30 (m, 1H), 2.68 (d, J=18.6 Hz, 1H), 2.55 (dd, J=18.6 Hz, 9.6 Hz, 1H), 2.38 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 168.7, 141.1, 135.1, 131.2, 129.1, 128.4, 127.8, 123.5 (q, JC—F=279.0 Hz), 69.5, 64.5 (br), 42.1, 32.3, 21.4. 19F NMR (376 MHz, CDCl3) δ: -67.49 (s); HRMS (ESI) calcd for C15H15F3N2NaO [M+Na]+ 319.1029, found 319.1020.
((3R, 3aR, 6aR)-3-Trifluoromethyl-2, 3, 3a, 4-tetrahydrocyc- lopenta[c]pyrazol-1-(6aH)-yl)(4-methylphenyl)methanone (anti-3d): White solid, 8.1 mg, yield 22%. m.p. 129~131 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.61 (s, 2H), 7.18 (d, J=7.8 Hz, 2H), 6.00 (s, 1H), 5.90 (s, 1H), 5.79 (s, 1H), 4.61 (s, 1H), 3.41 (s, 1H), 3.28 (t, J=7.8 Hz, 1H), 2.90~2.86 (m, 1H), 2.41 (d, J=18.0 Hz, 1H), 2.38 (s, 3H); HRMS (ESI) calcd for C15H15F3N2NaO [M+Na]+ 319.1029, found 319.1015.
((3R, 3aS, 6aS)-3-Trifluoromethyl-2, 3, 3a, 4-tetrahydrocyc-lopenta[c]pyrazol-1(6aH)-yl)(3-chlorophenyl)methanone (3f): White solid, 62.0 mg, total yield 62%, dr 79:21. m.p. 77~79 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.72 (s, 1H), 7.61 (d, J=7.8 Hz, 1H), 7.42 (d, J=7.8 Hz, 1H), 7.32 (t, J=7.8 Hz, 1H), 6.02~6.01 (m, 1H), 5.81~5.80 (m, 1H), 5.67 (br, 1H), 4.41 (br, 1H), 3.74~3.67 (m, 1H), 3.38~3.33 (m, 1H), 2.68 (d, J=18.6 Hz, 1H), 2.57 (dd, J=18.6 Hz, 9.6 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ: 167.2, 135.9, 135.4, 133.7, 130.7, 129.1, 129.0, 127.4, 127.1, 123.7 (q, JC—F=277.5 Hz), 69.5, 64.5 (br), 42.1, 32.2; 19F NMR (376 MHz, CDCl3) δ: -67.42 (s); HRMS (ESI) calcd for C14H12ClF3N2NaO [M+Na]+ 339.0482, found 339.0488.
((3R, 3aS, 6aS)-3-Trifluoromethyl-2, 3, 3a, 4-tetrahydrocyc-lopenta[c]pyrazol-1(6aH)-yl)(4-chlorophenyl)methanone (3g): White solid, 111.8 mg, total yield 97%, dr 91:9. m.p. 134~136 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.71 (d, J=7.8 Hz, 2H), 7.36 (d, J=8.4 Hz, 2H), 6.02~6.01 (m, 1H), 5.82~5.81 (m, 1H), 5.68 (br, 1H), 4.46 (br, 1H), 3.72~3.67 (m, 1H), 3.37~3.33 (m, 1H), 2.67 (d, J=18.6 Hz, 1H), 2.59~2.54 (m, 1H); 13C NMR (150 MHz, CDCl3) δ: 167.6, 136.9, 135.4, 132.4, 130.6, 128.0, 127.5, 123.7 (q, JC—F=277.5 Hz), 69.5, 64.6 (br), 42.0, 32.2; 19F NMR (376 MHz, CDCl3) δ: -68.25 (s); HRMS (ESI) calcd for C14H12ClF3N2NaO [M+Na]+ 339.0482, found 339.0484.
((3R, 3aS, 6aS)-3-Trifluoromethyl-2, 3, 3a, 4-tetrahydrocyc-lopenta[c]pyrazol-1(6aH)-yl)(4-fluorophenyl)methanone (3h): White solid, 106.0 mg, total yield 97%, dr 91:9. m.p. 141~143 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.69~7.62 (m, 2H), 7.36~7.30 (m, 4H), 6.85 (s, 1H), 6.66 (d, J=14.4 Hz, 1H), 6.34 (s, 1H), 4.95 (s, 1H), 3.85~3.81 (m, 1H), 3.35~3.33 (m, 1H); 13C NMR (150 MHz, CDCl3) δ: 167.5, 164.1 (d, J=250.5 Hz), 135.3, 131.6 (d, J=4.5 Hz), 130.1, 127.6, 123.8 (q, JC—F=279.0 Hz), 114.7 (d, J=22.5 Hz), 69.6, 64.5 (br), 42.0, 32.2; 19F NMR (376 MHz, CDCl3) δ: -70.03 (s), -111.82 (s); HRMS (ESI) calcd for C14H12F4N2NaO [M+Na]+ 323.0778, found 323.0774.
((3R, 3aS, 6aS)-3-Trifluoromethyl-2, 3, 3a, 4-tetrahydrocyc-lopenta[c]pyrazol-1(6aH)-yl)(4-nitrophenyl)methanone (3i): White solid. 85.7 mg, total yield 77%, dr 85:15. m.p. 126~128 ℃; 1H NMR (600 MHz, CDCl3) δ: 8.24 (d, J=8.4 Hz, 2H), 7.87 (d, J=8.4 Hz, 2H), 6.05~6.04 (m, 1H), 5.84 (s, 1H), 5.73 (br, 1H), 4.38 (br, 1H), 3.73~3.69 (m, 1H), 3.43~3.38 (m, 1H), 2.69 (d, J=18.6 Hz, 1H), 2.60 (dd, J=18.0 Hz, 9.0 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ: 167.2, 148.8, 140.2, 135.8, 129.9, 127.2, 123.6 (q, JC—F=274.5 Hz), 122.9, 69.6, 64.8 (br), 42.2, 32.1; 19F NMR (376 MHz, CDCl3) δ: -67.37 (s); HRMS (ESI) calcd for C14H12F3N3NaO3 [M+Na]+ 350.0723, found 350.0722.
((3R, 3aS, 6aS)-3-Trifluoromethyl-2, 3, 3a, 4-tetrahydrocyc-lopenta[c]pyrazol-1(6aH)-yl)(4-methoxyphenyl)methanone (3j): White solid, 96.5 mg, total yield 92%, dr 84:16. m.p. 118~120 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.81 (d, J=8.4 Hz, 2H), 6.89 (d, J=9.0 Hz, 2H), 6.00~5.99 (m, 1H), 5.83~5.81 (m, 1H), 5.67 (br, 1H), 4.62 (br, 1H), 3.84 (s, 3H), 3.74~3.67 (m, 1H), 3.35~3.30 (m, 1H), 2.68 (d, J=18.0 Hz, 1H), 2.55 (dd, J=18.0 Hz, 9.0 Hz, 1H). 13C NMR (150 MHz, CDCl3) δ: 168.1, 161.6, 135.0, 131.3, 127.8, 126.1, 123.8 (q, JC—F=277.5 Hz), 112.9, 69.6, 64.4 (br), 55.2, 41.9, 32.2. 19F NMR (376 MHz, CDCl3) δ: -7.46 (s); HRMS (ESI) calcd for C14H15F3N2NaO [M+ Na]+ 335.0978, found 335.0975.
((3R, 3aS, 6aS)-3-Trifluoromethyl-2, 3, 3a, 4-tetrahydrocyc-lopenta[c]pyrazol-1(6aH)-yl)(2-naphthyl)methanoe (3k): White solid, 84.4 mg, total yield 73%, dr 87:13. m.p. 171~173 ℃; 1H NMR (600 MHz, CDCl3) δ: 8.27 (s, 1H), 7.89 (d, J=7.8 Hz, 1H), 7.84 (t, J=7.2 Hz, 2H), 7.79 (d, J=8.4 Hz, 1H), 7.56~7.50 (m, 2H), 6.02 (s, 1H), 5.88~5.87 (m, 1H), 5.72 (br, 1H), 4.62 (br, 1H), 3.78~3.71 (m, 1H), 3.38~3.34 (m, 1H), 2.70 (d, J=18.6 Hz, 1H), 2.56 (dd, J=18.6 Hz, 9.6 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ: 168.8, 135.3, 134.3, 132.3, 131.5, 129.6, 128.9, 127.7, 127.6, 127.4, 127.3, 126.4, 125.7, 123.9 (q, JC—F=279.0Hz), 69.6, 64.5 (br), 41.2, 32.3; 19F NMR (376 MHz, CDCl3) δ: -67.44 (s); HRMS (ESI) calcd for C18H15- F3N2NaO [M+Na]+ 355.1029, found 355.1041.
((3R, 3aS, 6aS)-3-Trifluoromethyl-2, 3, 3a, 4-tetrahydrocyc-lopenta[c]pyrazol-1(6aH)-yl)(2-furyl)methanone (3l): White solid, 69.4 mg, total yield 75%, dr 85:15. m.p. 123~125 ℃; 1H NMR (600 MHz, CDCl3) δ: 8.09 (s, 1H), 7.60 (s, 1H), 7.11 (t, J=3.6 Hz, 1H), 6.80 (t, J=3.6 Hz, 2H), 6.42 (d, J=5.4 Hz, 1H), 4.22 (s, 1H), 3.20 (s, 1H), 2.49 (q, J=7.8 Hz, 1H), 2.19 (d, J=9.0 Hz, 1H), 1.61 (d, J=9.0 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ: 164.2, 140.4, 135.0, 133.7, 133.1, 132.4, 126.2, 125.2 (q, JC—F=279.0 Hz), 68.3, 67.3 (q, JC—F=30.0 Hz), 45.4, 44.2; 19F NMR (376 MHz, CDCl3) δ: -78.19 (s); HRMS (ESI) calcd for C12H11F3N2NaO2 [M+Na]+ 295.0665, found 295.0666.
((3R, 3aS, 6aS)-3-Trifluoromethyl-2, 3, 3a, 4-tetrahydrocyc-lopenta[c]pyrazol-1(6aH)-yl)(benzyl)methanone (3m): Colorless liquid, 78.4 mg, total yield 87%, dr 76:24; 1H NMR (600 MHz, CDCl3) δ: 7.33 (d, J=7.8 Hz, 2H), 7.30 (t, J=7.2 Hz, 2H), 7.23 (t, J=7.2 Hz, 1H), 5.91 (s, 1H), 5.69 (s, 1H), 5.68 (d, J=3.0 Hz, 1H), 4.20 (d, J=13.2 Hz, 1H), 3.91 (d, J=13.8 Hz, 1H), 3.76 (d, J=13.8 Hz, 1H), 3.39~3.34 (m, 1H), 3.24~3.20 (m, 1H), 2.57 (d, J=18.6 Hz, 1H), 2.49 (dd, J=18.0, 9.0 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ: 171.4, 135.1, 134.8, 129.3, 128.5, 127.7, 126.9, 123.8 (q, JC—F=277.5 Hz), 68.7, 64.4 (q, J=28.7 Hz), 42.6, 41.0, 32.0. 19F NMR (376 MHz, CDCl3) δ: -67.28 (s); HRMS (ESI) calcd for C15H15F3N2NaO [M+ Na]+ 319.1029, found 319.1026.
((3R, 3aS, 6aS)-3-Trifluoromethyl-2, 3, 3a, 4-tetrahydrocyc-lopenta[c]pyrazol-1(6aH)-yl)(c-hexyl)methanone (3n): White solid, 89.3 mg, total yield 89%, dr 87:13. m.p. 64~66 ℃; 1H NMR (600 MHz, CDCl3) δ: 5.93 (s, 1H), 5.71~5.69 (m, 1H), 5.51 (d, J=6.6 Hz, 1H), 3.63~3.56 (m, 1H), 3.31~3.26 (m, 1H), 2.90 (t, J=12.0 Hz, 1H), 2.61 (d, J=18.0 Hz, 1H), 2.54~2.49 (m, 1H), 1.78~1.66 (m, 6H), 1.47~1.42 (m, 2H), 1.31 (t, J=3.0 Hz, 1H), 1.29 (t, J=3.6 Hz, 1H), 1.27~1.25 (m, 1H); 13C NMR (150 MHz, CDCl3) δ: 176.4, 134.5, 128.0, 123.9 (q, JC—F=279.0 Hz), 68.2, 64.9 (q, J=28.5 Hz), 42.4, 41.1, 32.0, 29.5, 28.4, 25.8, 25.7, 25.6; 19F NMR (376 MHz, CDCl3) δ: -67.36 (s); HRMS (ESI) calcd for C14H19F3N2NaO [M+Na]+ 311.1342, found 311.1345.
((3R, 5R)-5-Phenyl-3-(trifluoromethyl)pyrazolidin-1-yl)-(4-chlorophenyl)methanone (5): Colorless liquid, 94.5 mg, total yield 71%, dr 94:6; 1H NMR (400 MHz, CDCl3) δ: 7.54 (s, 2H), 7.40~7.26 (m, 8H), 5.39 (br, 1H), 3.91~3.84 (m, 1H), 2.97~2.90 (m, 1H), 2.36~2.29 (m, 1H); 13C NMR (150 MHz, CDCl3) δ: 168.4, 140.9, 137.3, 132.0, 130.1, 129.0, 128.3, 127.8, 125.7, 124.1 (q, JC—F=274.5 Hz), 60.8, 59.7 (br), 36.8; 19F NMR (376 MHz, CDCl3) δ: -74.29 (s); HRMS (ESI) calcd for C17H14ClF3N2NaO [M+Na]+ 377.0635, found 377.0639.
4.3 General procedure for the synthesis of 6
A solution of trifluoromethylated pyrazolidines 3 (0.10 mmol) and CuCl2 (0.10 mmol) in EtOH (5 mL) was stirred at reflux for 20 min. The reaction mixture was cooled to room temperature. The solid was filtered from the reaction mixture. The filtrate was concentrated under vacuum. Purification of the residue by silica gel column chromatography using petroleum ether:acetone (V:V=4:1) as the eluent furnished the products 6.
((3a, 6aS)-3-Trifluoromethyl-3a, 4-dihydrocyclopenta[c]-pyrazol-1(6aH)-yl)(phenyl)methanone (6a): Colorless liquid, 26.8 mg, yield 96%. 1H NMR (600 MHz, CDCl3) δ: 7.87 (d, J=7.2 Hz, 2H), 7.49 (t, J=6.0 Hz, 1H), 7.42 (t, J=7.8 Hz, 2H), 6.15 (s, 1H), 6.01~6.00 (m, 1H), 5.80 (d, J=10.0 Hz, 1H), 4.03 (t, J=10.2 Hz, 1H), 2.87 (m, J=18.0 Hz, 9.0 Hz, 1H), 2.81 (d, J=17.4 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ: 166.9, 147.7 (q, JC—F=36.0 Hz), 133.1, 132.9, 131.5, 129.9, 127.8, 127.7, 120.2 (q, JC—F=270.0 Hz), 71.3, 45.2, 36.6; 19F NMR (376 MHz, CDCl3) δ: -65.68 (s); HRMS (ESI) calcd for C14H11F3N2NaO [M+Na]+ 303.0716, found 303.0722.
((3aR, 6aS)-3-Trifluoromethyl-3a, 4-dihydrocyclopenta[c]-pyrazol-1(6aH)-yl)(4-methyiphenyl)methanone (6b): Colorless liquid, 28.2 mg, yield 96%. 1H NMR (400 MHz, CDCl3) δ: 7.79 (d, J=8.0 Hz, 2H), 7.21 (d, J=8.0 Hz, 2H), 6.15~6.12 (m, 1H), 6.00~5.97 (m, 1H), 5.78 (d, J=10.0 Hz, 1H), 4.03~3.98 (m, 1H), 2.89~2.76 (m, 2H), 2.39 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 166.8, 147.4 (q, JC—F=36.0 Hz), 142.1, 133.0, 130.0, 129.9, 128.5, 127.7, 120.3 (q, JC—F=270.0 Hz), 71.3, 45.0, 36.6, 21.5; 19F NMR (376 MHz, CDCl3) δ: -65.67 (s); HRMS (ESI) calcd for C15H13F3N2NaO [M+Na]+ 317.0872, found 317.0878.
((3aR, 6aS)-3-Trifluoromethyl-3a, 4-dihydrocyclopenta-[c]pyrazol-1(6aH)-yl)(3-chlorophenyl)methanone (6c): Co- lorless liquid, 28.4 mg, yield 94%. 1H NMR (600 MHz, CDCl3) δ: 7.86 (s, 1H), 7.75 (d, J=7.8 Hz, 1H), 7.60 (d, J=7.8 Hz, 1H), 7.35 (t, J=7.8 Hz, 1H), 6.14~6.13 (m, 1H), 6.02~6.01 (m, 1H), 5.78 (d, J=10.2 Hz, 1H), 4.04 (t, J=12.0 Hz, 1H), 2.88 (dd, J=18.0, 9.0 Hz, 1H), 2.81 (d, J=18.0 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ: 165.4, 147.9 (q, JC—F=36.0 Hz), 134.6, 133.9, 133.4, 131.5, 130.0, 129.1, 128.1, 127.4, 119.8 (q, JC—F=270.0 Hz), 71.4, 45.2, 36.6; 19F NMR (376 MHz, CDCl3) δ: -65.76 (s); HRMS (ESI) calcd for C14H10ClF3N2NaO [M+ Na]+ 337.0326, found 337.0331.
((3aR, 6aS)-3-Trifluoromethyl-3a, 4-dihydrocyclopenta[c]-pyrazol-1(6aH)-yl)(4-fluorophenyl)methanone (6d): Co- lorless liquid, 29.2 mg, yield 98%. 1H NMR (600 MHz, CDCl3) δ: 7.95~7.93 (m, 2H), 7.09 (t, J=9.0 Hz, 2H), 6.14~6.13 (m, 1H), 6.02~6.00 (m, 1H), 5.79 (d, J=9.6 Hz, 1H), 4.02 (t, J=10.2 Hz, 1H), 2.88 (dd, J=18.0, 9.0 Hz, 1H), 2.79 (d, J=17.4 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ: 165.6, 164.7 (d, J=250.5 Hz), 147.9 (q, JC—F=36.0 Hz), 133.3, 132.6 (d, J=9.0 Hz), 128.9 (d, J=3.0 Hz), 127.6, 120.2 (q, J=270.0 Hz), 115.0 (d, JC—F=21.0 Hz), 71.4, 45.2, 36.6; 19F NMR (376 MHz, CDCl3) δ: -65.74 (s), -107.91 (s); HRMS (ESI) calcd for C14H10- F4N2NaO [M+Na]+ 321.0621, found 321.0625.
((3aR, 6aS)-3-Trifluoromethyl-3a, 4-dihydrocyclopenta[c]-pyrazol-1(6aH)-yl)(4-methoxyphenyl)methanone (6e): Co- lorless liquid, 30.1 mg, yield 97%. 1H NMR (400 MHz, CDCl3) δ: 7.94 (d, J=6.0 Hz, 2H), 6.91 (d, J=5.2 Hz, 2H), 6.14~6.13 (m, 1H), 6.00~5.99 (m, 1H), 5.79 (d, J=6.8 Hz, 1H), 4.00 (t, J=6.8 Hz, 1H), 3.85 (s, 3H), 2.87 (dd, J=18.0, 9.0 Hz, 1H), 2.80 (d, J=17.4 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ: 166.0, 162.3, 147.2 (q, JC—F=36.0 Hz), 132.9, 132.2, 127.8, 124.9, 120.3 (q, JC—F=270.0 Hz), 113.0, 71.4, 55.3, 44.9, 36.6; 19F NMR (376 MHz, CDCl3) δ: -65.64 (s); HRMS (ESI) calcd for C15H13F3N2NaO [M+Na]+ 333.0821, found 333.0815.
((3aR, 6aS)-3-Trifluoromethyl-3a, 4-dihydrocyclopenta[c]-pyrazol-1(6aH)-yl)(2-furyl)methanone (6f): White solid, 25.1 mg, yield 93%, m.p. 133~135 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.64 (dd, J=2.4, 1.2 Hz, 1H), 7.45 (dd, J=1.2, 0.6 Hz, 1H), 6.53 (dd, J=5.4, 2.4 Hz, 1H), 6.13~6.10 (m, 1H), 6.01~5.98 (m, 1H), 5.77 (d, J=15.6 Hz, 1H), 4.06~4.00 (m, 1H), 2.89~2.84 (m, 1H), 2.83~2.78 (m, 1H); 13C NMR (150 MHz, CDCl3) δ: 156.2, 148.0 (q, JC—F=36.0 Hz), 146.1, 145.1, 133.2, 127.6, 120.3 (q, JC—F=267.0 Hz), 119.9, 111.8, 71.2, 45.0, 36.6. 19F NMR (376 MHz, CDCl3) δ: -65.82 (s); HRMS (ESI) calcd for C12H9F3N2NaO2 [M+Na]+ 293.0508, found 293.0521.
(R)-(3-Trifluoromethyl-5-phenyl-4, 5-dihydro-1H-pyrazo- l-1-yl)(4-chlorophenyl)methanone (6g): Colorless liquid, 27.8 mg, yield 93%. 1H NMR (600 MHz, CDCl3) δ: 7.86 (d, J=8.4 Hz, 2H), 7.40 (d, J=9.0 Hz, 2H), 7.37 (d, J=7.8 Hz, 2H), 7.32 (t, J=7.8 Hz, 1H), 7.28 (d, J=7.2 Hz, 2H), 5.82 (dd, J=12.0, 6.0 Hz, 1H), 3.66~3.61 (m, 1H), 3.07~3.03 (m, 1H); 13C NMR (150 MHz, CDCl3) δ: 166.0, 145.1 (q, JC—F=37.5 Hz), 140.2, 138.1, 131.5, 131.1, 129.2, 128.4, 128.2, 125.6, 119.7 (q, JC—F=270.0 Hz), 62.3, 39.5; 19F NMR (376 MHz, CDCl3) δ: -68.61 (s); HRMS (ESI) calcd for C15H12F3N2NaO [M+Na]+ 375.0482, found 375.0488.
Supporting Information Copies of 1H NMR, 13C NMR, 19F NMR spectra and the HRMS data of compounds 3, 5 and 6; X-ray Structure data of syn-3a (CCDC: 1570212) and anti-3a (CCDC: 1570213). The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn/.
-
-
[1]
(a) Behr, L. C. ; Fusco, R. ; Jarboe, C. H. In Pyrazoles, Pyrazolines, Pyrazolidines, Indazoles and Condensed Rings, in The Chemistry of Heterocyclic Compounds, Ed. : Wiley R. H., Interscience Publishers, New York, 1967.
(b) Kadouri-Puchot, C. ; Agami, C. In Asymmetric Synthesis of Nitrogen Heterocycles, Ed. : Royer, J., Wiley-VCH, Weinheim, Germany, 2009. -
[2]
(a) Witherington, J. ; Bordas, V. ; Gaiba, A. ; Green, P. M. ; Naylor, A. ; Parr, N. ; Smith, D. G. ; Takle, A. K. ; Ward, R. W. Bioorg. Med. Chem. Lett. 2006, 16, 2256.
(b) Ahn, J. H. ; Jung, S. H. ; Kim, J. A. ; Song, S. B. ; Kwon, S. J. ; Kim, K. R. ; Rhee, S. D. ; Park, S. -D. ; Lee, J. M. ; Kim, S. S. ; Cheon, H. G. Chem. Pharm. Bull. 2005, 53, 1048.
(c) Goodell, J. R. ; Puig-Basagoiti, F. ; Forshey, B. M. ; Shi, P. Y. ; Ferguson, D. M. J. Med. Chem. 2006, 49, 2127. -
[3]
(a) Taha, A. M. ; Omar, N. M. ; Bayomi, S. M. ; Ammar, E. M. ; Afifi, A. J. Pharm. Sci. 1974, 63, 395.
(b) Prasad, Y. J. ; Rao, A. L. ; Prasoona, L. ; Murali, K. ; Kumar, P. R. Bioorg. Med. Chem. Lett. 2005, 15, 5030. -
[4]
(a) Kornet, M. J. J. Pharm. Sci. 1978, 67, 1471.
(b) Kornet, M. J. ; Garrett, R. J. J. Pharm. Sci. 1979, 68, 377.
(c). Özdemir, Z. ; Kandilci, H. B. ; Gümüşel, B. ; Çalış, Ü. ; Bilgin, A. A. Eur. J. Med. Chem. 2007, 42, 373. -
[5]
(a) Berenson, H. ; Trenton, N. J. US 3931406, 1976.
(b) Cross, B. ; Grasso, C. P. ; Walworth, B. L. US 3948936, 1976.
(c) Özdemir, A. ; Turan-Zitouni, G. ; Kaplancıklı, Z. A. ; Revial, G. ; Güven, K. Eur. J. Med. Chem. 2007, 42, 403. -
[6]
(a) Kornet, M. J. ; Tan, H. S. J. Pharm. Sci. 1972, 61, 188.
(b) Gürspy, A. ; Demirayak, Ş. ; Çapan, G. ; Erol, K. ; Vural, K. Eur. J. Med. Chem. 2000, 35, 359. -
[7]
(a) Chen, H. ; Chen, H. ; Bai, X. ; Li, Y. ; Yin, S. Chin. J. Org. Chem. 2011, 31, 231(in Chinese).
(陈华凤, 陈华文, 白雪, 李颖, 尹述凡, 有机化学, 2011, 31, 231. )
(b) Kornet, M. J. ; Thio, P. A. J. Pharm. Sci. 1969, 58, 724.
(c) Kornet, M. J. J. Med. Chem. 1966, 9, 493. -
[8]
Jeong, T. S.; Kim, K. S.; An, S. J.; Cho, K. H.; Lee, S.; Lee, W. S. Bioorg. Med. Chem. Lett. 2004, 14, 2715. doi: 10.1016/j.bmcl.2004.03.079
-
[9]
(a) Luo, Z. ; Liu, Z. ; Zhang, G. ; Ye, J. ; Yang, Z. Chin. J. Org. Chem. 2014, 34, 392(in Chinese)
(罗志刚, 刘正勇, 张广龙, 叶杰欣, 杨卓鸿, 有机化学, 2014, 34, 392. )
(b) Ye, J. ; Ye, W. ; Zhang, W. ; Jin, L. ; Tu, J. Chin. J. Org. Chem. 2011, 31, 1917(in Chinese).
(叶家海, 叶文芳, 张文超, 金连连, 屠金月, 有机化学, 2011, 31, 1917. )
(c) Oh, S. W. ; Zhang, D. R. ; Kang, Y. S. Mater. Sci. Eng. C 2004, 24, 131.
(d) Fu, H. B. ; Yao, J. N. J. Am. Chem. Soc. 2001, 123, 1434.
(e) Gao, X. C. ; Cao, H. ; Zhang, L. Q. ; Zhang, B. W. ; Cao, Y. ; Huang, C. H. J. Mater. Chem. 1999, 9, 1077. -
[10]
(a) Gou, B. ; Yang, C. ; Zhang, L. ; Xia, W. Acta Chim. Sinica 2017, 75, 66(in Chinese).
(苟宝权, 杨超, 张磊, 夏吾炯, 化学学报, 2017, 75, 66. )
(b) Rong, J. ; Ni, C. ; Wang, Y. ; Kuang, C. ; Gu, Y. ; Hu, J. Acta Chim. Sinica 2017, 75, 105(in Chinese).
(荣健, 倪传法, 王云泽, 匡翠文, 顾玉诚, 胡金波, 化学学报, 2017, 75, 105. )
(c) Hui, R. ; Zhang, S. ; Tan, Z. ; Wu, X. ; Feng, B. Chin. J. Org. Chem. 2017, 37, 3060(in Chinese).
(惠人杰, 张士伟, 谭政, 吴小培, 冯柏年, 有机化学, 2017, 37, 3060. )
(d) Tian, Q. ; Weng, Z. Chin. J. Chem. 2016, 34, 505.
(e) Zheng, Y. ; Ma, H. ; Ma, J. -A. Chin. J. Chem. 2016, 34, 511.
(f) Zhou, Y. ; Wang, J. ; Gu, Z. ; Wang, S. ; Zhu, W. ; Acen?a, J. L. ; Soloshonok, V. A. ; Izawa, K. ; Liu, H. Chem. Rev. 2016, 116, 422.
(g) Yang, X. ; Wu, T. ; Phipps, R. J. ; Toste, F. D. Chem. Rev. 2015, 115, 826.
(h) Gillis, E. P. ; Eastman, K. J. ; Hill, M. D. ; Donnelly, D. J. ; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315.
(i) Fujiwara, T. ; O'Hagan, D. J. Fluorine Chem. 2014, 167, 16.
(j) Gouverneur, V. ; Mu?ller, K. Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications, Imperial College Press, London, 2012.
(k) Uneyama, K. Organofluorine Chemistry, Blackwell, Oxford, 2006. -
[11]
(a) Wei, W. ; Wang, J. ; Wang, Y. ; Huang, Y. ; Tan, Y. ; Weng, Z. Angew. Chem., Int. Ed. 2017, 56, 10476.
(b) Schӓfer, G. ; Ahmetovic, M. ; Abele, S. Org. Lett. 2017, 19, 6578.
(c) Petrov, V A. Fluorinated Heterocyclic Compounds: Synthesis, Chemistry, and Applications, Wiley, Hoboken, New Jersey, 2009. -
[12]
(a) Shaaban, M. R. ; Mayhoub, A. S. ; Farag, A. M. Expert Opin. Ther. Pat. 2012, 22, 253.
(b) Reddy, M. V. R. ; Billa, V. K. ; Pallela, V. R. ; Mallireddigari, M. R. ; Boominathan, R. ; Gabriel, J. L. ; Reddy, E. P. Bioorg. Med. Chem. 2008, 16, 3907.
(c) Zhang, X. ; Li, X. ; Allan, G. F. ; Sbriscia, T. ; Linton, O. ; Lundeen, S. G. ; Sui, Z. J. Med. Chem. 2007, 50, 3857.
(d) Liu, X. H. ; Lv, P. C. ; Li, B. ; Zhu, H. L. ; Song, B. A. Aust. J. Chem. 2008, 61, 223. -
[13]
(a) Peng, X. ; Huang, D. ; Wang, K. -H. ; Wang, Y. ; Wang, J. ; Su, Y. ; Hu, Y. Org. Biomol. Chem. 2017, 15, 6214.
(b) Qin, S. ; Zheng, Y. ; Zhang, F. -G. ; Ma, J. -A. Org. Lett. 2017, 19, 3406.
(c) Zhang, F. -G. ; Wei, Y. ; Yi, Y. -P. ; Nie, J. ; Ma, J. -A. Org. Lett. 2014, 16, 3122.
(d) Wang, D. ; Deng, H. P. ; Wei, Y. ; Xu, Q. ; Shi, M. Eur. J. Org. Chem. 2013, 401.
(e) Xie, H. ; Zhu, J. ; Chen, Z. ; Li, S. ; Wu, Y. Synthesis 2011, 2767.
(f) Ogawa, S. ; Nishimine, T. ; Tokunaga, E. ; Shibata, N. Synthesis 2010, 3274. -
[14]
(a) Zhang, W. ; Su, Y. ; Wang, K. -H. ; Wu, L. ; Chang, B. ; Shi, Y. ; Huang, D. ; Hu, Y. Org. Lett. 2017, 19, 376.
(b) Li, J. ; Yang, T. ; Zhang, H. ; Huang, D. ; Wang, K. -H. ; Su, Y. ; Hu, Y. Chin. J. Org. Chem. 2017, 37, 925(in Chinese).
(李军, 杨天宇, 张怀远, 黄丹凤, 王克虎, 苏瀛鹏, 胡雨来, 有机化学, 2017, 37, 925. )
(c) Zhang, W. ; Su, Y. ; Chong, S. ; Wu, L. ; Cao, G. ; Huang, D. ; Wang, K. -H. ; Hu, Y. Org. Biomol. Chem. 2016, 14, 11162.
(d) Ji, S. ; Alkhalil, A. E. ; Su, Y. ; Xia, X. ; Chong, S. ; Wang, K. -H. ; Huang, D. ; Fu, Y; . Hu, Y. Synlett 2015, 1725.
(e) Xu, J. ; Hu, Y. ; Huang, D. ; Wang, K. -H. ; Xu, C. ; Niu, T. Adv. Synth. Catal. 2012, 354, 515. -
[15]
(a) Hong, X. ; Küc?ük, H. B. ; Maji, M. S. ; Yang, Y. -F. ; Rueping, M. ; Houk, K. N. J. Am. Chem. Soc. 2014, 136, 13769.
(b) Gan, W. ; Moon, P. J. ; Clavette, C. ; Neves, N. D. ; Markiewicz, T. ; Toderian, A. B. ; Beauchemin, A. M. Org. Lett. 2013, 15, 1890.
(c) Serdyuk, O. V. ; Zamfir, A. ; Hampel, F. ; Tsogoeva, S. B. Adv. Synth. Catal. 2012, 354, 3115.
(d) Zamfir, A. ; Schenker, S. ; Bauer, W. ; Clark, T. ; Tsogoeva, S. B. Eur. J. Org. Chem. 2011, 3706.
(e) Shirakawa, S. ; Lombardi, P. J. ; Leighton, J. L. J. Am. Chem. Soc. 2005, 127, 9974.
(f) Yamashita, Y. ; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 11279.
-
[1]
-
Table 1. Optimization of reaction conditionsa

Entry Mole ratio of 1a:2:Lewis acid Lewis acid Solvent Temp./℃ Total yieldb/% dr (syn/anti)c 1 1:2:0.1 BF3·OEt2 CH2Cl2 r.t. 90 62/38 2 1:2:0.1 BF3·OEt2 (CH2Cl)2 r.t. 90 61/39 3 1:2:0.1 BF3·OEt2 THF r.t. 62 55/45 4 1:2:0.1 BF3·OEt2 1, 4-Dioxane r.t. 42 59/41 5 1:2:0.1 BF3·OEt2 Toluene r.t. 44 69/31 6 1:2:0.1 BF3·OEt2 CH2Cl2 Reflux 65 65/35 7 1:2:0.1 BF3·OEt2 CH2Cl2 0 37 58/42 8d 1:2:0.1 BF3·OEt2 CH2Cl2 -10 17 68/32 9 1:2:0.1 Ni(ClO4)2·6H2O CH2Cl2 r.t. n.r.e — 10 1:2:0.1 AlCl3 CH2Cl2 r.t. n.r.e — 11 1:2:0.1 Sc(OTf)3 CH2Cl2 r.t. 47 71/29 12 1:2:0.1 Cu(OTf)2 CH2Cl2 r.t. 91 72/28 13 1:2:0.1 Fe(OTf)2 CH2Cl2 r.t. 28 46/54 14 1:2:0.1 AgOTf CH2Cl2 r.t. 84 60/40 15 1:2:0.1 TfOH CH2Cl2 r.t. 85 58/42 16 1:2:0.2 Cu(OTf)2 CH2Cl2 r.t. 81 71/29 17 1:2:0.05 Cu(OTf)2 CH2Cl2 r.t. 20 70/30 a Reaction conditions: 1a (0.4 mmol), 2 (0.8 mmol), Lewis acid (10 mol%, 0.04 mmol), solvent (5 mL). b Isolated yield. c Diastereomer ratio was determined by 1H NMR spectroscopic analysis of the crude reaction mixture. d 72 h. e n.r.=no reaction, 1a was recovered. Table 2. Substrate scope of trifluoromethylated acylhydrazonesa

Entry R1 R2 Product Total yieldb/% dr (syn/anti)c 1 H Ph (1a) 3a 91 72/28d 2 H 2-CH3C6H4 (1b) 3b n.r.e — 3 H 3-CH3C6H4 (1c) 3c 55 66/34d 4 H 4-CH3C6H4 (1d) 3d 87 69/31d 5 H 2-ClC6H4 (1e) 3e n.r.e — 6 H 3-ClC6H4 (1f) 3f 62 79/21 7 H 4-ClC6H4 (1g) 3g 97 91/9 8 H 4-FC6H4 (1h) 3h 97 91/9 9 H 4–O2NC6H4 (1i) 3i 77 85/15 10 H 4-CH3OC6H4 (1j) 3j 92 84/16 11 H 2-Naphthyl (1k) 3k 73 87/13 12 H 2-Furyl (1l) 3l 75 85/15 13 H Benzyl (1m) 3m 87 76/24 14 H c-Hexyl (1n) 3n 89 87/13 15 Ph Ph (1o) 3o n.r.e — a Reaction conditions: 1 (0.4 mmol), 2 (0.8 mmol), Cu(OTf)2 (10 mol%, 0.04 mmol), CH2Cl2 (5 mL). b Isolated yields. c Determined by 1H NMR spectroscopic analysis of the crude reaction mixture. d Both isomers were isolated. e n.r.=no reaction, 1a was recovered. Table 3. Transformation of the [3+2] cycloaddition productsa


a Reaction conditions: 3 (0.1 mmol), CuCl2 (0.1 mmol), reflux in EtOH (5 mL) for 20 min. Isolated yield. -
扫一扫看文章
计量
- PDF下载量: 6
- 文章访问数: 1075
- HTML全文浏览量: 71

下载:
下载: