Citation: Xie Zhenda, Fu Manlin, Yin Biao, Zhu Qing. Research Progress in 1, 8-Naphthalimide-Based Fluorescent Probes for Two-Photon Imaging[J]. Chinese Journal of Organic Chemistry, ;2018, 38(6): 1364-1376. doi: 10.6023/cjoc201712031 shu

Research Progress in 1, 8-Naphthalimide-Based Fluorescent Probes for Two-Photon Imaging

  • Corresponding author: Zhu Qing, zhuq@zjut.edu.cn
  • Received Date: 23 December 2017
    Revised Date: 18 January 2018
    Available Online: 6 June 2018

    Fund Project: the National Natural Science Foundation of China 21272212the National Natural Science Foundation of China 21472172Project supported by the National Natural Science Foundation of China (Nos. 21472172, 21272212)

Figures(12)

  • Fluorescent imaging technology has received great attention owing to their advantageous features in high sensitivity, relatively simple operations and real-time living cells, tissue and in vivo imaging. Compared with one-photon confocal imaging, two-photon confocal imaging offers considerable advantages such as high resolution, deep-tissue depth, lower tissue auto-fluorescence and so on. As typical D-π-A two-photon dyes, 1, 8-naphthalimide dyes have wide application in two-photon imaging for enzyme, reactive carbon species, reactive oxygen species, reactive nitrogen species, biothiols and ions due to their advantages such as high photostability, large Stokes/anti-Stokes shifts. According to the mechanisms of intramolecular charge transfer, photoinduced electron transfer and fluorescence resonance energy transfer, etc., the application in two-photon imaging of 1, 8-naphthalimide dyes is summarized and emphasized.
  • 加载中
    1. [1]

      Li, X.; Gao, X.; Shi, W.; Ma, H. Chem. Rev. 2014, 114, 590.  doi: 10.1021/cr300508p

    2. [2]

      Chen, X.; Tian, X.; Shin, I.; Yoon, J. Chem. Soc. Rev. 2011, 40, 4783.  doi: 10.1039/c1cs15037e

    3. [3]

      Tang, Y.; Lee, D.; Wang, J.; Li, G.; Yu, J.; Lin, W.; Yoon, J. Chem. Soc. Rev. 2015, 44, 5003.  doi: 10.1039/C5CS00103J

    4. [4]

      Kikuchi, K. Chem. Soc. Rev. 2010, 39, 2048.  doi: 10.1039/b819316a

    5. [5]

      Kim, H. M.; Cho, B. R. Chem. Rev. 2015, 115, 5014.  doi: 10.1021/cr5004425

    6. [6]

      Kim, D.; Ryu, H. G.; Ahn, K. H. Org. Biomol. Chem. 2014, 12, 4550.  doi: 10.1039/C4OB00431K

    7. [7]

      Huang, C.; Chen, S. Prog. Chem. 2017, 29, 1215 (in Chinese).

    8. [8]

      Loving, G.; Imperiali, B. J. Am. Chem. Soc. 2008. 130, 13630.  doi: 10.1021/ja804754y

    9. [9]

      Prezhdo, O. V.; Uspenskii, B. V.; Prezhdo, V. V.; Boszczyk, W.; Distanov, V. B. Dyes Pigm. 2009, 83, 324.  doi: 10.1016/j.dyepig.2009.05.010

    10. [10]

      Banerjee, S.; Veale, E. B.; Phelan, C. M.; Murphy, S. A.; Tocci, G. M.; Gillespie, L. J.; Frimannsson, D. O.; Kelly, J. M.; Gunnlaugsson, T. Chem. Soc. Rev. 2013, 42, 1601.  doi: 10.1039/c2cs35467e

    11. [11]

      Duke, R. M.; Veale, E. B.; Pfeffer, F. M.; Kruger, P. E.; Gunnlaugsson, T. Chem. Soc. Rev. 2010, 39, 3936.  doi: 10.1039/b910560n

    12. [12]

      Qian, X.; Xiao, Y.; Xu, Y.; Guo, X.; Qian, J.; Zhu, W. Chem. Commun. 2010, 46, 6418.  doi: 10.1039/c0cc00686f

    13. [13]

      Alexiou, M. S.; Tychopoulos, V.; Ghorbanian, S.; Tyman, J. H. P.; Brown, R. G.; Brittain, P. I. J. Chem. Soc., Perkin Trans. 2 1990, 837.
       

    14. [14]

      de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515.  doi: 10.1021/cr960386p

    15. [15]

      Finkel, T.; Holbrook, N. J. Nature 2000, 408, 2392.
       

    16. [16]

      Lippert, A. R.; Bittner, V.; Chang, C. J. Acc. Chem. Res. 2011, 44, 793.  doi: 10.1021/ar200126t

    17. [17]

      Srikun, D.; Miller, E. W.; Domaille, D. W.; Chang, C. J. J. Am. Chem. Soc. 2008, 130, 4596.  doi: 10.1021/ja711480f

    18. [18]

      Zdolsek, J.; Zhang, H.; Roberg, K.; Brunk, U. Free Radical Res. Commun. 1993, 18, 71.  doi: 10.3109/10715769309147344

    19. [19]

      Ren, M.; Deng, B.; Wang, J. Y.; Kong, X.; Liu, Z. R.; Zhou, K.; He, L.; Lin, W. Biosens. Bioelectron. 2016, 79, 237.  doi: 10.1016/j.bios.2015.12.046

    20. [20]

      Xu, Z.; Liu, T.; Spring, D. R.; Cui, J. Org. Lett. 2013, 15, 2310.  doi: 10.1021/ol400973v

    21. [21]

      Winterbourn, C. C.; Hampton, M. B.; Livesey, J. H.; Kettle, A. J. J. Biol. Chem. 2006, 281, 39860.  doi: 10.1074/jbc.M605898200

    22. [22]

      Pattison, D. I.; Davies, M. J. Biochemistry 2006, 45, 81522.
       

    23. [23]

      Zhu, B.; Li, P.; Shu, W.; Wang, X.; Liu, C.; Wang, Y.; Wang, Z.; Wang, Y.; Tang, B. Anal. Chem. 2016, 88, 12532.  doi: 10.1021/acs.analchem.6b04392

    24. [24]

      Zhang, B.; Yang, X.; Zhang, R.; Liu, Y.; Ren, X.; Xian, M.; Ye Y., Zhao Y. Anal. Chem. 2017, 89, 10384.  doi: 10.1021/acs.analchem.7b02361

    25. [25]

      Wang, B.; Li, P.; Yu, F.; Song, P.; Sun, X.; Yang, S.; Lou, Z.; Han, K. Chem. Commun. 2013, 49, 1014.  doi: 10.1039/C2CC37803E

    26. [26]

      Lou, Z.; Li, P.; Han, K. Acc. Chem. Res. 2015, 48, 1358.  doi: 10.1021/acs.accounts.5b00009

    27. [27]

      Yu, F.; Li, P.; Wang, B.; Han, K. J. Am. Chem. Soc. 2013, 135, 7674.  doi: 10.1021/ja401360a

    28. [28]

      Yu, F.; Li, P.; Li, G.; Zhao, G.; Chu, T.; Han, K. J. Am. Chem. Soc. 2011, 133, 11030.  doi: 10.1021/ja202582x

    29. [29]

      Lou, Z.; Li, P.; Pan, Q.; Han, K. Chem. Commun. 2013, 49, 2445.  doi: 10.1039/c3cc39269d

    30. [30]

      Weidinger, A.; Kozlov, A. V. Biomolecules 2015, 5, 472.  doi: 10.3390/biom5020472

    31. [31]

      Radi, R. J. Biol. Chem. 2013, 288, 26464.  doi: 10.1074/jbc.R113.472936

    32. [32]

      Li, Y.; Xie, X.; Yang, X.; Li, M.; Jiao, X.; Sun, Y.; Wang, X.; Tang, B. Chem. Sci. 2017, 8, 4006.  doi: 10.1039/C7SC00303J

    33. [33]

      Brewer, T. F.; Chang, C. J. J. Am. Chem. Soc. 2015, 137, 10886.  doi: 10.1021/jacs.5b05340

    34. [34]

      Roth, A.; Li, H.; Anorma, C.; Chan, J. J. Am. Chem. Soc. 2015, 137, 10890.  doi: 10.1021/jacs.5b05339

    35. [35]

      Xie, Z.; Ge, J.; Zhang, H.; Bai, T.; He, S.; Ling, J.; Sun, H.; Zhu, Q. Sens. Actuators, B 2017, 241, 1050.

    36. [36]

      Lin, J.-Y.; Zhang, M.-W.; Wang, J.-G.; Li, H.; Wei, H.-Y.; Liu, R.; Dai, G.; Liao, X. -X. Exp. Ther. Med. 2016, 11, 577.  doi: 10.3892/etm.2015.2950

    37. [37]

      Lin, V. S.; Chen, W.; Xian, M.; Chang, C. J. Chem. Soc. Rev. 2015, 44, 4596.  doi: 10.1039/C4CS00298A

    38. [38]

      Liu, X. L.; Du, X. J.; Dai, C. G.; Song, Q. H. J. Org. Chem. 2014, 79, 9481.  doi: 10.1021/jo5014838

    39. [39]

      Kimura, H.; Shibuya, N.; Kimura, Y. Antioxid. Redox Signaling 2012, 17, 45.
       

    40. [40]

      Fu, Y. J.; Yao, H. W.; Zhu, X. Y.; Guo, X. F.; Wang, H. Anal. Chim. Acta 2017, 994, 1.  doi: 10.1016/j.aca.2017.09.030

    41. [41]

      Zhou, Y.; Zhang, J.; Yoon, J. Chem. Rev. 2014, 114, 5511.  doi: 10.1021/cr400352m

    42. [42]

      Zhang, H.; Wu, Y.; You, J.; Cao, L.; Ding, S.; Jiang, K.; Wang, Z. Chin. J. Org. Chem. 2016, 36, 2559 (in Chinese).
       

    43. [43]

      Zhang, J. F.; Lim, C. S.; Bhuniya, S.; Cho, B. R.; Kim, J. S. Org. Lett. 2011, 13, 1190.  doi: 10.1021/ol200072e

    44. [44]

      Zhou, L.; Hu, S.; Wang, H.; Sun, H.; Zhang, X. Spectrochim. Acta, Part A 2016, 166, 25.  doi: 10.1016/j.saa.2016.05.013

    45. [45]

      Qian, L.; Li, L.; Yao, S. Q. Acc. Chem. Res. 2016, 49, 626.  doi: 10.1021/acs.accounts.5b00512

    46. [46]

      Dai, Z. R.; Ge, G. B.; Feng, L.; Ning, J.; Hu, L. H.; Jin, Q.; Wang, D. D.; Lv, X.; Dou, T. Y.; Cui, J. N.; Yang, L. J. Am. Chem. Soc. 2015. 137, 14488.

    47. [47]

      Dai, Z. R.; Feng, L.; Jin, Q.; Cheng, H.; Li, Y.; Ning, J.; Yu, Y.; Ge, G. B.; Cui, J. N.; Yang, L. Chem. Sci. 2017, 8, 2795.  doi: 10.1039/C6SC03970G

    48. [48]

      Kaminsky, L. S.; Spivack, S. D. Mol. Aspects Med. 1999, 20, 70.

    49. [49]

      Wei, C.; Caccavale, R. J.; Weyand, E. H.; Chen, S.; Iba, M. M. Cancer Lett. 2002, 178, 25.  doi: 10.1016/S0304-3835(01)00809-6

    50. [50]

      Satoh, T.; Hosokawa, M. J. Pestic. Sci. 2010, 35, 218.  doi: 10.1584/jpestics.R10-02

    51. [51]

      Pratt, S. E.; Durland-Busbice, S.; Shepard, R. L.; Donoho, G. P.; Starling, J. J.; Wickremsinhe, E. R.; Perkins, E. J.; Dantzig, A. H. Mol. Cancer Ther. 2013, 12, 481.  doi: 10.1158/1535-7163.MCT-12-0654

    52. [52]

      Jin, Q.; Feng, L.; Wang, D. D.; Dai, Z. R.; Wang, P.; Zou, L. W.; Liu, Z. H.; Wang, J. Y.; Yu, Y.; Ge, G. B.; Cui, J. N.; Yang, L. ACS Appl. Mater. Interfaces 2015, 7, 28474.  doi: 10.1021/acsami.5b09573

    53. [53]

      Hildebrandt, M.; Reutter, W.; Arck, P.; Rose, M.; Klapp, B. F. Clin. Sci. 2000, 99, 932.

    54. [54]

      Zou, L. W.; Wang, P.; Qian, X. K.; Feng, L.; Yu, Y.; Wang, D. D.; Jin, Q.; Hou, J.; Liu, Z. H.; Ge, G. B.; Yang, L. Biosens. Bioelectron. 2017, 90, 283.  doi: 10.1016/j.bios.2016.11.068

    55. [55]

      Spergel, D. J.; Krȕth, U.; Shimshek, D. R.; Sprengel, R.; Seeburg, P. H. Prog. Neurobiol. 2001, 63, 673.  doi: 10.1016/S0301-0082(00)00038-1

    56. [56]

      Kamiya, M.; Asanuma, D.; Kuranaga, E.; Takeishi, A.; Sakabe, M.; Miura, M.; Nagano, T.; Urano, Y. J. Am. Chem. Soc. 2011, 133, 12960.  doi: 10.1021/ja204781t

    57. [57]

      Asanuma, D.; Sakabe, M.; Kamiya, M.; Yamamoto, K.; Hiratake, J.; Ogawa, M.; Kosaka, N.; Choyke, P. L.; Nagano, T.; Kobayashi, H.; Urano, Y. Nat. Commun. 2015, 6, 6463.  doi: 10.1038/ncomms7463

    58. [58]

      Zhang, X.; Wu, H.; Li, P.; Qu, Z.; Tan. M.; Han. K. Chem. Commun. 2016, 52, 8283.  doi: 10.1039/C6CC04373A

    59. [59]

      Hattori, A.; Matsumoto, H.; Mizutani, S.; Tsujimoto, M. J. Biochem. 1999, 125, 931.  doi: 10.1093/oxfordjournals.jbchem.a022371

    60. [60]

      Shastri, N.; Schwab, S.; Serwold, T. Annu. Rev. Immunol. 2002, 20, 463.  doi: 10.1146/annurev.immunol.20.100301.064819

    61. [61]

      Xu, S.; Liu, H. W.; Hu, X. X.; Huan, S. Y.; Zhang, J.; Liu, Y. C.; Yuan, L.; Qu, F. L.; Zhang, X. B.; Tan, W. Anal. Chem. 2017, 89, 7641.  doi: 10.1021/acs.analchem.7b01561

    62. [62]

      Ueno, T.; Urano, Y.; Kojima, H.; Nagano, T. J. Am. Chem. Soc. 2006, 128, 10640.  doi: 10.1021/ja061972v

    63. [63]

      Ueno, T.; Urano, Y.; Setsukinai, K.; Takakusa, H.; Kojima, H.; Kikuchi, K.; Ohkubo, K.; Fukuzumi, S.; Nagano, T. J. Am. Chem. Soc. 2004, 126, 14079.  doi: 10.1021/ja048241k

    64. [64]

      Zhang, P.; Wang, H.; Zhang, D.; Zeng, X.; Zeng, R.; Xiao, L.; Tao, H.; Long, Y.; Yi, P.; Chen, J. Sens. Actuators, B 2018, 255, 2223.

    65. [65]

      Cnop, M.; Foufelle, F.; Velloso, L. A. Trends Mol. Med. 2012, 18, 59.  doi: 10.1016/j.molmed.2011.07.010

    66. [66]

      Harding, H. P.; Ron, D. Diabetes 2002, 51, S455.  doi: 10.2337/diabetes.51.2007.S455

    67. [67]

      Xiao, H.; Liu, X.; Wu, C.; Wu, Y.; Li, P.; Guo, X.; Tang, B. Biosens. Bioelectron. 2017, 91, 449.  doi: 10.1016/j.bios.2016.12.068

    68. [68]

      Weishaupt, K. R.; Gomer, C. J.; Dougherty, T. J. Cancer Res. 1976, 36, 2326.
       

    69. [69]

      Castano, A. P.; Mroz, P.; Hamblin, M. R. Nat. Rev. Cancer 2006, 6, 535.  doi: 10.1038/nrc1894

    70. [70]

      Liu, H. W.; Xu, S.; Wang, P.; Hu, X. X.; Zhang, J.; Yuan, L.; Zhang, X. B.; Tan, W. Chem. Commun. 2016, 52, 12330.  doi: 10.1039/C6CC05880A

    71. [71]

      da Silva, T. R. M.; de Freitas, J. R.; Silva, Q. C.; Figueira, C. P.; Roxo, E.; Leao, S. C.; de Freitas, L. A. R.; Veras, P. S. T. Infect. Immun. 2002, 70, 5628.  doi: 10.1128/IAI.70.10.5628-5634.2002

    72. [72]

      Yu, H.; Xiao, Y.; Jin, L. J. Am. Chem. Soc. 2012, 134, 17486.  doi: 10.1021/ja308967u

    73. [73]

      Tang, Y.; Kong, X.; Xu, A.; Dong, B.; Lin, W. Angew. Chem., Int. Ed. 2016, 55, 3356.  doi: 10.1002/anie.201510373

    74. [74]

      Lee, Y. H.; Tang, Y.; Verwilst, P.; Lin, W.; Kim, J. S. Chem. Commun. 2016, 52, 112472.
       

    75. [75]

      Ren, W. X.; Han, J. Y.; Uhm, S.; Jang, Y. J.; Kang, C.; Kim, J. H.; Kim, J. S. Chem. Commun. 2015, 51, 10403.  doi: 10.1039/C5CC03075G

    76. [76]

      Matafome, P.; Sena, C.; Seica, R. Endocrine 2013, 43, 472.  doi: 10.1007/s12020-012-9795-8

    77. [77]

      Singh, R.; Barden, A.; Mori, T.; Beilin, L. Diabetologia 2001, 44, 129.  doi: 10.1007/s001250051591

    78. [78]

      Tang, T.; Zhou, Y.; Chen, Y.; Li, M.; Feng, Y.; Wang, C.; Wang, S.; Zhou, X. Anal. Methods 2015, 7, 2386. 2
       

    79. [79]

      Bulaj, G.; Kortemme, T.; Goldenberg, D. P. Biochemistry 1998, 37, 8965.  doi: 10.1021/bi973101r

    80. [80]

      Weerapana, E.; Wang, C.; Simon, G. M.; Richter, F.; Khare, S.; Dillon, M. B. D.; Bachovchin, D. A.; Mowen, K.; Baker, D.; Cravatt, B. F. Nature 2010, 468, 790.  doi: 10.1038/nature09472

    81. [81]

      Zhu, X.; Li, Y.; Zan, W.; Zhang, J.; Chen, Z.; Liu, X.; Qi, F.; Yao, X.; Zhang, X.; Zhang, H. Photochem. Photobiol. Sci. 2016, 15, 412.  doi: 10.1039/C5PP00468C

    82. [82]

      Chen, X. Q.; Zhou, Y.; Peng, X. J.; Yoon, J. Y. Chem. Soc. Rev. 2010, 39, 2120.  doi: 10.1039/b925092a

    83. [83]

      Wang, G. L.; Jiao, H. J.; Zhu, X. Y.; Dong, Y. M.; Li, Z. J. Analyst 2013, 138, 2000.  doi: 10.1039/c3an36878e

    84. [84]

      Liu, Y.; Liu, Y.; Liu, W.; Liang, S. Spectrochim. Acta, Part A 2015, 137, 509.  doi: 10.1016/j.saa.2014.08.072

    85. [85]

      Yuan, L.; Lin, W.; Zheng, K.; Zhu, S. Acc. Chem. Res. 2013, 46, 1462.  doi: 10.1021/ar300273v

    86. [86]

      Yao, S.; Qian, Y. Sens. Actuators, B 2017, 252, 877. 

    87. [87]

      Xie, X.; Tang, F.; Shangguan, X.; Che, S.; Niu J.; Xiao, Y.; Wang, X.; Tang, B. Chem. Commun. 2017, 53, 6520.  doi: 10.1039/C7CC03050A

    88. [88]

      Lee, D. E.; Koo, H.; Sun, I. C.; Ryu, J. H.; Kim, K.; Kwon, I. C. Chem. Soc. Rev. 2012, 41, 2656.  doi: 10.1039/C2CS15261D

    89. [89]

      Yuan, Y.; Zhang, R.; Cheng, X.; Xu, S.; Liu, B. Chem. Sci. 2016, 7, 4245.  doi: 10.1039/C6SC00055J

    90. [90]

      Shen, W.; Ge, J.; He, S.; Zhang, R.; Zhao, C.; Fan, Y.; Yu, S.; Liu, B.; Zhu, Q. Chem. -Asian J. 2017, 12, 1532.  doi: 10.1002/asia.v12.13

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    3. [3]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    8. [8]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    9. [9]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    10. [10]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    11. [11]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    12. [12]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    13. [13]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    14. [14]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    15. [15]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    16. [16]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    17. [17]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    18. [18]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    19. [19]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    20. [20]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

Metrics
  • PDF Downloads(165)
  • Abstract views(5971)
  • HTML views(2419)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return