Switchable Synthesis of Iodoalkynes and Diiodoalkenes from Terminal Alkynes

Suo Chen Xiaowei Zhang Hui Zhao Xiaohong Guo Xiangguo Hu

Citation:  Chen Suo, Zhang Xiaowei, Zhao Hui, Guo Xiaohong, Hu Xiangguo. Switchable Synthesis of Iodoalkynes and Diiodoalkenes from Terminal Alkynes[J]. Chinese Journal of Organic Chemistry, 2018, 38(5): 1172-1176. doi: 10.6023/cjoc201711050 shu

以炔为原料可调控合成碘代炔和二碘代烯烃

    通讯作者: 章晓炜, xwzhang@jxnu.edu.cn
    胡祥国, huxiangg@iccas.ac.cn
  • 基金项目:

    江西省杰出青年人才计划 20171BCB23039

    国家自然科学基金 21502076

    国家自然科学基金(No.21502076)、合肥市百人计划、江西省杰出青年人才计划(No.20171BCB23039)资助项目

摘要: 碘代炔和二碘代烯烃作为有机中间体广泛地应用于C—C,C—O和C—N的构建反应中.因此,发展合成以上两类化合物的新方法具有一定的重要性.发展了一种新颖且可调控合成碘代炔和二碘代烯的方法.该方法使用端炔为原料,碘化锌和亚硝基叔丁酯为反应试剂.研究发现,在三乙胺的存在下该方法生成碘代炔,没有三乙胺的条件下生成二碘烯烃.以上合成碘代炔的方法具有操作简单、条件温和(弱碱和室温)和官能团兼容性好等特点.与之相比,二碘代烯烃对底物的电性有较严格的要求:只有负电性或者电中性的底物能发生反应.控制实验表明,碘代炔和二碘烯烃在包含最优条件的一系列反应条件下不能相互转化,控制实验结果可以由两个反应都经历了由碘代炔形成的碘鎓盐中间体来解释.

English

  • Iodo-substituted compounds are valuable intermediates used extensively in organic synthesis for carbon-carbon, carbon-oxygen and carbon-nitrogen bond formation. Among them, iodoalkynes and diiodoalkenes continue to be important building blocks because of their ability of participating in different coupling reactions and heterocyclic ring formations. Although different methods have been developed for the synthesis of these compounds, the direct iodination of terminal alkynes is the most appealing strategy owing to the commercial availability of these compounds.[1] As shown in Scheme 1, iodoalkyne[2~24] and diiodoalkenes[25~44] can be prepared from an I+ (e.g. NIS, I2 etc.) under various conditions. Alternatively, they can also be synthesized from I- reagents (e.g. NaI, KI, NH4I, CuI, ZnI2) together with an oxidant. Despite the obvious similarities that different methods of the latter approach share, no reaction system can be used for the synthesis of both iodoalkynes and diiodoalkenes. Herein, we report a novel and switchable synthesis of iodoalkynes and diiodoalkenes from terminal alkynes with zinc iodide (ZnI2) and tert-butylnitrite (TBN).

    Scheme 1

    Scheme 1.  Previous methods for the synthesis of iodoalkynes and diiodoalkenes and this work

    At the onset, we aimed to develop a new procedure for iodoalkynes. tert-Butyl nitrite was chosen as the oxidant based on its good reactivity towards different alkynes.[41~43] 1a and triethylamine were selected as the model compound and the base, respectively. Then different I- reagents and solvents were screened, and it was found that ZnI2 in CHCl3 gave the highest yield (Entries 1~7, Table 1). Other bases, such as 1, 5-diazabicylo[5, 4, 0]undec-5-ene (DBU) and sodium carbonate afforded diminished yields (Entries 8, 9, Table 1). Finally, through the fine tuning the reaction parameters (Entries 10~15, Table 1). The optimized conditions were identified as following: ZnI2 (1.1 equiv.), tert-butyl nitrite (TBN, 3 equiv.), NEt3 (0.5 equiv.) in chloroform at room temperature (Entry 15, Table 1).

    Table 1

    Table 1.  Optimization of direct iodination of terminal alkyne
    下载: 导出CSV
    Entry I- reagent
    (equiv.)
    Base
    (equiv.)
    Solvent Yielda/%
    1b NaI (1.5) Et3N (2.0) Toluene Trace
    2b KI (1.5) Et3N (2.0) Toluene Trace
    3b CuI (1.5) Et3N (2.0) Toluene Trace
    4b ZnI2 (1.5) Et3N (2.0) Toluene 35
    5b ZnI2 (1.5) Et3N (2.0) CH3CN Trace
    6b ZnI2 (1.5) Et3N (2.0) THF Trace
    7b ZnI2 (1.5) Et3N (2.0) CHCl3 38
    8b ZnI2 (1.5) Na2CO3 (2.0) CHCl3 Trace
    9b ZnI2 (1.5) DBU (2.0) CHCl3 34
    10b ZnI2 (1.5) Et3N (1.5) CHCl3 62
    11b ZnI2 (1.5) Et3N (1.0) CHCl3 75
    12b ZnI2 (1.5) Et3N (0.5) CHCl3 90
    13c ZnI2 (1.5) Et3N (0.5) CHCl3 86
    14d ZnI2 (1.1) Et3N (0.5) CHCl3 91
    15e ZnI2 (1.1) Et3N (0.5) CHCl3 93
    a Isolated yield; b 1.5 equiv. TBN and 50 ℃; c 1.5 equiv. TBN and room temperature; d 2.0 equiv. TBN and room temperature; e 3.0 equiv. TBN and room temperature.

    With the optimized conditions in hand, we next proceeded to investigate the substrate scope. As shown in Table 2, the reaction conditions were mild enough to tolerate different functional groups. Alkyl (2b, 2e), alkyloxy (2c, 2d), halo (2g~2i), cyano (2j), nitro (2k), ester (2l) substituted substrates all underwent the reaction successfully to furnish the desired products in 61%~95% yields. The reaction was not sensitive to the electron density of the substrates, as similar yields were obtained for both electron-rich compounds (2c, 2d) and the electron-poor substrates (2j, 2k). Because only weak base (triethylamine) is used, this method is well complementary to those in which strong bases (e.g., EtMgBr, [4] BuLi, [23] and DBU[16]) are needed.

    Table 2

    Table 2.  Synthesis of iodoalkyne
    下载: 导出CSV
    a Isolated yield.

    Much efforts to tune the aforementioned conditions to furnish the diiodoalkene proved to be unfruitful. To our surprise, diiodoalkene 3a was obtained in 73% yield with the same reagent system (ZnI2/TBN) in the absence of triethylamine. It is interesting to note that the reaction is very sensitive to the electron property of the substrates. For electron-rich substrates (e.g., 3c, 3d), the desired transformation occurred at room temperature smoothly. For the remaining compounds shown in Scheme 3 (e.g., 3e~3i), heating at 100 ℃ was required to get the reaction work. No products could be obtained with Substrates bearing electron-withdrawing substituents such as ester and nitro groups. In all cases, iodoalkynes were obtained as the minor products and thus complicated the column purification, which resulted in the relative moderate yields for the desired diiodo-compounds.

    Table 3

    Table 3.  Synthesis of diiodoalkenes
    下载: 导出CSV
    a Isolated yields of diiodoalkenes; b isolated yields of iodoalkynes.

    Scheme 3

    Scheme 3.  Mechanistic discussion of the formation of iodoalkynes and diiodoalkenes

    In order to gain some insight into the aforementioned two types of reactions, we have run the following control experiments (Scheme 2). It is reasonable to expect that iodoalkynes and diiodoalkenes are interchangeable under the reaction conditions. However, we found that triethylamine alone, or together with TBN and ZnI2, could not convert diiodoalkene 3a to iodoalkyne 2a (Scheme 2a). Similarly, iodoalkyne 2a could not be transformed to diiodoalkene 3a under conditions shown in Scheme 2b.

    Scheme 2

    Scheme 2.  Control experiments

    Based on the control experiment and literature precedents, [27] We postulate that the two reactions proceed through the reaction pathways shown in Scheme 3. ZnI2 serves as an iodine source[3] and TBN as an oxidant[45] (Scheme 3a). The diiodoalkene is formed by reaction of the terminal alkyne with iodine to form a iodonium intermediate, followed by ring opening with an iodide (Scheme 3b).[27] The mechanism corroborates well with the experimental results (only E-diiodoalkenes were formed). One the other hand, the iodoalkyne is possibly formed by deprotonation of the iodonium intermediate with triethylamine, followed by the elimination to yield the terminal alkyne (Scheme 3c). As the iodonium intermediate is generated from the terminal alkyne, the mechanism proposed also explains why the diiodoalkenes 2 and the alkynes 3 were not interchangeable, which was proved by the control experiments (Scheme 2).

    In conclusion, we have developed a novel and switchable protocol for the synthesis of iodoalkynes and diiodoalkenes, which were formed from terminal alkynes using the same reagent system of ZnI2 and TBN in the presence or absence of triethylamine, respectively. The iodoalkyne formation is operationally simple, mild (weak base and room temperature), and tolerant of a large range of functional groups. As only weak base (triethylamine) is used, this method is well complementary to other approaches in which strong bases (e.g., EtMgBr, [4] BuLi, [23] and DBU[16]) are required. However, the diiodoalkene transformation shows interesting dependence on the electron property, and only electron-rich and neutral compounds are viable substrates. The control experiments performed suggest that iodoalkynes and diiodoalkenes are not interchangeable under the reaction conditions, which supports both of the reaction involve a iodonium intermediate formed directly from a terminal alkyne.

    The alkyne (0.2 mmol) was added to a solution of zinc iodide (0.22 mmol), triethylamine (0.1mmol) and TBN (0.6 mmol) in dry CHCl3 (5 mL). The reaction mixture was stirred at room temperature under N2 atmosphere. After completion, the reaction was quenched with aqueous 10% Na2S2O3 solution. The reaction mixture was then diluted with CH2Cl2 (20mL), washed with brine (5 mL×2), and dried with anhydrous Na2SO4. After removal of the solvent under vacuum, the residue was purified by column chromatography.

    (Iodoethynyl)benzene (2a):[10] Yellow oil, 93% yield. 1H NMR (400 MHz, CDCl3)δ: 7.48~7.40 (m, 2H), 7.36~7.28 (m, 3H); 13C NMR (100 MHz, CDCl3) δ: 132.4, 128.9, 128.3, 123.5, 94.2, 6.2.

    1-(Iodoethynyl)-4-methylbenzene (2b):[10] Colorless oil, 74% yield. 1H NMR (400 MHz, CDCl3) δ: 7.33 (d, J=7.9 Hz, 2H), 7.12 (d, J=7.8 Hz, 2H), 2.35 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 139.1, 132.3, 129.1, 120.5, 94.4, 21.6, 4.9.

    1-(Iodoethynyl)-4-methoxybenzene (2c): Yellow solid, 85% yield. m.p. 59~61 ℃ (Lit.[10] m.p. 61~62 ℃); 1H NMR (400 MHz, CDCl3) δ: 7.46~7.33 (m, 2H), 6.89~6.78 (m, 2H), 3.81 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 160.0, 133.9, 115.6, 113.9, 94.0, 55.4, 3.9.

    1-(Iodoethynyl)-2-methoxybenzene (2d):[18] Yellow oil, 87% yield. 1H NMR (400 MHz, CDCl3) δ: 7.40 (dd, J=7.6, 1.7 Hz, 1H), 7.34~7.24 (m, 1H), 6.95~6.82 (m, 2H), 3.88 (s, 3H); 13C NMR (100MHz, CDCl3) δ: 161.1, 134.5, 130.3, 120.4, 112.6, 110.7, 90.5, 55.9, 9.3.

    1-(Iodoethynyl)-4-pentylbenzene (2e): Pale-yellow oil, 95% yield. 1H NMR (400 MHz, CDCl3) δ: 7.40~7.32 (m, 2H), 7.13 (d, J=8.1 Hz, 2H), 2.66~2.55 (m, 2H), 1.61 (q, J=7.6 Hz, 2H), 1.32 (tq, J=10.4, 4.3, 3.2 Hz, 4H), 0.90 (t, J=6.9 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 144.2, 132.3, 128.4, 120.7, 94.4, 36.0, 31.56, 31.0, 22.6, 14.1, 5.0; IR ν: 3027, 2956, 2166, 1605, 1410, 1378, 824 cm-1. HRMS (ESI) calcd for C13H16I [M+H]+ 299.02912, found 299.0288.

    1-(Iodoethynyl)-4-(trifluoromethyl)benzene (2f): White solid, 61% yield. m.p. 117~119 ℃ (Lit.[48a] m.p. 119~121 ℃); 1H NMR (400 MHz, CDCl3) δ: 7.57 (d, J=8.3 Hz, 2H), 7.53 (d, J=8.3 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 132.8, 130.6 (q, J=33 Hz), 127.2, 125.4 (q, J=3.8 Hz), 122.6, 93.0, 10.2.

    1-Chloro-4-(iodoethynyl)benzene (2g): Pale-yellow solid, 71% yield. m.p. 78~80 ℃ (Lit.[48a] m.p. 83~84 ℃), 7.28 (d, J=8.5 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 135.0, 133.7, 128.8, 120.0, 93.1, 7.8.

    1-Chloro-2-(iodoethynyl)benzene (2):[48b] Yellow oil, 86% yield. 1H NMR (400 MHz, CDCl3) δ: 7.50~7.44 (m, 1H), 7.42~7.36 (m, 1H), 7.29~7.17 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 136.8, 134.3, 129.9, 129.3, 126.5, 123.3, 91.0, 12.4.

    1-Bromo-4-(iodoethynyl)benzene (2i): Pale-yellow solid, 79% yield. m.p. 92~93 ℃ (Lit.[10] m.p. 92~94 ℃); 1H NMR (400 MHz, CDCl3) δ: 7.45 (d, J=8.5 Hz, 2H), 7.30 (d, J=8.5 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 133.8, 131.7, 123.3, 122.4, 93.2, 8.1.

    4-(Iodoethynyl)benzonitrile (2j): White solid, 87% yield. m.p. 166~168 ℃ (Lit.[48a]: m.p. 169~170 ℃); 1H NMR (400 MHz, CDCl3) δ: 7.60 (d, J=8.8 Hz, 2H), 7.50 (d, J=8.8 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 133.0, 132.1, 128.2, 118.3, 112.3, 92.7, 13.2.

    1-(Iodoethynyl)-4-nitrobenzene (2k): Pale-yellow solid, 88% yield. m.p. 169~170 ℃ (Lit.[48a] m.p. 67~168 ℃); 1H NMR (400 MHz, CDCl3) δ: 8.23~8.14 (m, 2H), 7.61~7.54 (m, 2H); 13C NMR (100MHz, CDCl3) δ: 147.5, 133.3, 130.1, 123.7, 92.5, 14.2.

    Methyl 4-(iodoethynyl)benzoate (2l): White solid, 89% yield. m.p. 133~135 ℃ (Lit.[48c] m.p. 135~137 ℃); 1H NMR (400 MHz, CDCl3) δ: 8.04~7.94 (m, 2H), 7.53~7.44 (m, 2H), 3.90 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 166.4, 132.4, 130.1, 129.5, 128.0, 93.5, 52.4, 10.7.

    The alkyne (0.2 mmol) was added to a solution of zinc iodide (0.22 mmol) and TBN (0.6 mmol) in dry CHCl3 (5 mL). The reaction mixture was stirred at room temperature under N2 atmosphere. After completion, the reaction was quenched with aqueous 10% Na2S2O3 solution. The reaction mixture was then diluted with CH2Cl2 (20 mL), washed with brine (5 mL×2), and dried with anhydrous Na2SO4. After removal of the solvent under vacuum, the residue was purified by column chromatography.

    (E)-(1, 2-Diiodovinyl)benzene (3a): White solid, 73% yield. m.p. 78~79 ℃ (Lit.[38] m.p. 73~75 ℃); 1H NMR (400 MHz, CDCl3) δ: 7.40~7.32 (m, 5H), 7.27 (s, 1H); 13C NMR (100 MHz, CDCl3) δ: 143.2, 129.1, 128.6, 128.5, 96.3, 80.9.

    (E)-1-(1, 2-Diiodovinyl)-4-methylbenzene (3b):[38] Orange oil, 61% yield. 1H NMR (400 MHz, CDCl3) δ: 7.27 (d, J=7.9 Hz, 2H), 7.23 (s, 1H), 7.17 (d, J=7.9 Hz, 2H), 2.36 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 140.3, 139.2, 129.2, 128.6, 96.7, 80.3, 21.5.

    (E)-1-(1, 2-Diiodovinyl)-4-methoxybenzene (3c):[38] Yellow oil, 78% yield. 1H NMR (400 MHz, CDCl3) δ: 7.41~7.28 (m, 2H), 7.20 (s, 1H), 6.96~6.80 (m, 2H), 3.83 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 159.9, 135.4, 130.3, 113.8, 96.7, 80.0, 55.4.

    (E)-1-(1, 2-Diiodovinyl)-2-methoxybenzene (3d): Yellow oil, 59% yield. 1H NMR (400 MHz, CDCl3) δ: 7.35 (ddd, J=8.3, 7.4, 1.1 Hz, 1H), 7.27 (s, 1H), 7.15 (dd, J=7.6, 1.8 Hz, 1H), 6.98 (td, J=7.5, 1.1 Hz, 1H), 6.91 (dd, J=8.4, 1.1 Hz, 1H), 3.90 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 155.4, 132.2, 130.7, 129.6, 120.8, 111.8, 92.7, 83.2, 55.9; IR ν: 3066, 2923, 1296, 1180, 840, 748 cm-1; HRMS (ESI) calcd for C9H9I2O [M+H]+ 386.8737, found 386.8731.

    (E)-1-(1, 2-Diiodovinyl)-4-pentylbenzene (3e):[38] Yellow oil, 60% yield. 1H NMR (400 MHz, CDCl3) δ: 7.29 (d, J=8.2 Hz, 2H), 7.22 (s, 1H), 7.16 (d, J=8.2 Hz, 2H), 2.60 (t, J=7.7 Hz, 2H), 1.70~1.57 (m, 2H), 1.41~1.29 (m, 4H), 0.90 (t, J=6.9 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 144.2, 140.3, 128.7, 128.5, 96.9, 80.2, 35.9, 31.7, 30.9, 22.7, 14.2.

    (E)-1-(1, 2-Diiodovinyl)-4-(trifluoromethyl)benzene (3f):[48d] Orange oil, 50% yield. 1H NMR (400 MHz, CDCl3) δ: 7.68~7.60 (m, 2H), 7.51~7.43 (m, 2H), 7.36 (s, 1H); 13C NMR (100 MHz, CDCl3) δ: 146.8, 131.1, 129.1, 126.7 (q, J=271 Hz), 125.7 (q, J=3.8 Hz), 122.5, 93.8, 82.5.

    (E)-1-(1, 2-Diiodovinyl)-4-fluorobenzene (3g):[38] Orange oil, 55% yield. 1H NMR (400 MHz, CDCl3) δ: 7.39~7.31 (m, 2H), 7.27 (s, 1H), 7.09~7.01 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 162.6 (d, JC—F=250 Hz, 1C), 139.2 (d, JC—F=3.6 Hz, 1C), 130.7 (d, JC—F=8.6 Hz, 2C), 115.6 (d, JC—F=22.4Hz, 2C), 94.9, 81.6.

    (E)-1-Chloro-4-(1, 2-diiodovinyl)benzene (3h):[38] Yellow oil, 47% yield. 1H NMR (400 MHz, CDCl3) δ: 7.37~7.33 (m, 2H), 7.32~7.27 (m, 3H); 13C NMR (100 MHz, CDCl3) δ: 141.5, 134.8, 129.9, 128.7, 94.5, 81.6.

    (E)-1-Bromo-4-(1, 2-diiodovinyl)benzene (3i): Yellow solid, 60% yield. m.p. 63~65 ℃ (Lit.[38] m.p. 62~64 ℃); 1H NMR (400 MHz, CDCl3) δ: 7.55~7.47 (m, 2H), 7.29 (s, 1H), 7.26~7.20 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 142.1, 131.8, 130.3, 123.2, 94.6, 81.8.

    Supporting Information The Supporting Information containing the 1H NMR and 13C NMR spectra of this paper is available free of charge via the Internet at http://sioc-journal.cn.

    1. [1]

      Wu, W. Q.; Jiang, H. F. Acc. Chem. Res. 2014, 47, 2483. doi: 10.1021/ar5001499

    2. [2]

      Jeffery, T. J. Chem. Soc., Chem. Commun. 1988, 909.

    3. [3]

      Casarini, A.; Dembech, P.; Reginato, G.; Ricci, A.; Seconi, G. Tetrahedron Lett. 1991, 32, 2169. doi: 10.1016/S0040-4039(00)71266-4

    4. [4]

      Rao, M. L. N.; Periasamy, M. Synth. Commun. 1995, 25, 2295. doi: 10.1080/00397919508011785

    5. [5]

      Monenschein, H.; Sourkouni-Argirusi, G.; Schubothe, K. M.; O'Hare, T.; Kirschning, A. Org. Lett. 1999, 1, 2101. doi: 10.1021/ol991149m

    6. [6]

      Nishiguchi, I.; Kanbe, O.; Itoh, K.; Maekawa, H. Synlett 2000, 89.

    7. [7]

      Abele, E.; Fleisher, M.; Rubina, K.; Abele, R.; Lukevics, E. J. Mol. Catal. A:Chem. 2001 165, 121. doi: 10.1016/S1381-1169(00)00451-9

    8. [8]

      Lahrache, H.; Robin, S.; Rousseau, G. Tetrahedron Lett. 2005, 46, 1635. doi: 10.1016/j.tetlet.2005.01.089

    9. [9]

      Stefani, H. A.; Cella, R.; D rr, F. A.; Pereira, C. M. P.; Gomes, F. P.; Zeni, G. Tetrahedron Lett. 2005, 46, 2001. doi: 10.1016/j.tetlet.2005.01.161

    10. [10]

      Yan, J.; Li, J. H.; Cheng, D. P. Synlett 2007, 2442. http://downloads.hindawi.com/archive/2013/406049.xml

    11. [11]

      Meng, L. G.; Cai, P. J.; Guo, Q. X.; Xue, S. Synth. Commun. 2008, 38, 225. doi: 10.1080/00397910701749724

    12. [12]

      Chen, S. N.; Lin, T. C.; Hung, T. T.; Tsai, F. Y. J. Chin. Chem. Soc. 2009, 56, 1078. doi: 10.1002/jccs.v56.5

    13. [13]

      Reddy, K. R.; Venkateshwar, M.; Maheswari, C. U.; Kumar, P. S. Tetrahedron Lett. 2010, 51, 2170. doi: 10.1016/j.tetlet.2010.02.074

    14. [14]

      Nosel, P.; Lauterbach, T.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Chem. Eur. J. 2013, 19, 8634. doi: 10.1002/chem.v19.26

    15. [15]

      Nouzarian, M.; Hosseinzadeh, R.; Golchoubian, H. Synth. Commun. 2013, 43, 2913. doi: 10.1080/00397911.2012.749991

    16. [16]

      Li, M. R.; Li, Y. J.; Zhao, B. Z.; Liang, F. S.; Jin, L. Y. RSC Adv. 2014, 4, 30046. doi: 10.1039/C4RA04736B

    17. [17]

      Chowdhury, R. M.; Wilden, J. D. Org. Biomol. Chem. 2015, 13, 5859. doi: 10.1039/C5OB00494B

    18. [18]

      Gómez-Herrera, A.; Nahra, F.; Brill, M.; Nolan, S. P.; Cazin, C. S. J. ChemCatChem 2016, 8, 3381. doi: 10.1002/cctc.v8.21

    19. [19]

      Karpov, G. V.; Popik, V. V. J. Am. Chem. Soc. 2007, 129, 3792. doi: 10.1021/ja064470q

    20. [20]

      Barsoum, D. N.; Okashah, N.; Zhang, X. G.; Zhu, L. J. Org. Chem. 2015, 80, 9542. doi: 10.1021/acs.joc.5b01536

    21. [21]

      Chen, W. W.; Zhang, J. L.; Wang, B.; Zhao, Z. X.; Wang, X. Y.; Hu, Y. F. J. Org. Chem. 2015, 80, 2413. doi: 10.1021/jo502634h

    22. [22]

      Hein, J. E.; Tripp, J. C.; Krasnova, L. B.; Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2009, 48, 8018. doi: 10.1002/anie.v48:43

    23. [23]

      Wilkins, L. C.; Lawson, J. R.; Wieneke, P.; Rominger, F.; Hashmi, A. S. K.; Hansmann, M. M.; Melen, R. L. Chem. Eur. J. 2016, 22, 14618. doi: 10.1002/chem.201602719

    24. [24]

      贺干武, 刘凤伟, 许新华, 有机化学, 2007, 27, 663. doi: 10.3321/j.issn:0253-2786.2007.05.018He, G. W.; Liu, F. W.; Xu, X. H. Chin. J. Org. Chem. 2007, 27, 663(in Chinese). doi: 10.3321/j.issn:0253-2786.2007.05.018

    25. [25]

      Larson, S.; Luidhardt, T.; Kabalka, G. W.; Pagni, R. M. Tetrahedron Lett. 1988, 29, 35. doi: 10.1016/0040-4039(88)80009-1

    26. [26]

      Hondrogiannis, G.; Lee, L. C.; Kabalka, G. W.; Pagni, R. M. Tetrahedron Lett. 1989, 30, 2069. doi: 10.1016/S0040-4039(01)93713-X

    27. [27]

      Barluenga, J.; Rodriguez, M. A.; Campos, P. J. J. Org. Chem. 1990, 55, 3104. doi: 10.1021/jo00297a027

    28. [28]

      Henaff, N.; Stewart, S. K.; Whiting, A. Tetrahedron Lett. 1997, 38, 4525. doi: 10.1016/S0040-4039(97)00920-9

    29. [29]

      Duan, J. X.; Dolbier, W. R.; Jr.; Chen, Q. Y. J. Org. Chem. 1998, 63, 9486. doi: 10.1021/jo9816663

    30. [30]

      Hénaff, N.; Whiting, A. J. Chem. Soc., Perkin Trans. 1 2000, 395. https://es.scribd.com/document/81091798/Energetic-Materials

    31. [31]

      Li, J. H.; Xie, Y. X.; Yin, D. L. Green Chem. 2002, 4, 505. doi: 10.1039/B206536C

    32. [32]

      Li, J. H.; Xie, Y. X.; Yin, D. L.; Jiang, H. F. Chin. J. Chem. 2003, 21, 714. https://www.sciencedirect.com/science/article/pii/S0012821X14005810

    33. [33]

      Jereb, M.; Zupan, M.; Stavber, S. Chem. Commun. 2004, 2614.

    34. [34]

      Pavlinac, J.; Zupan, M.; Stavber, S. Org. Biomol. Chem. 2007, 5, 699. doi: 10.1039/B614819K

    35. [35]

      Terent'ev, A. O.; Borisov, D. A.; Krylov, I. B.; Nikishin, G. I. Synth. Commun. 2007, 37, 3151. doi: 10.1080/00397910701545171

    36. [36]

      Tveryakova, E. N.; Miroshnichenko, Y. Y.; Perederina, I. A.; Yusubov, M. S. Russ. J. Org. Chem. 2007, 43, 152. doi: 10.1134/S1070428007010216

    37. [37]

      Stavber, G.; Iskra, J.; Zupan, M.; Stavber, S. Adv. Synth. Catal. 2008, 350, 2921. doi: 10.1002/adsc.v350:18

    38. [38]

      Guo, C. C.; Jiang, Q.; Wang, J. Y. Synthesis 2015, 47, 2081. doi: 10.1055/s-00000084

    39. [39]

      Lin, Y. M.; Lu, G. P.; Cai, C.; Yi, W. B. Org. Lett. 2015, 17, 3310. doi: 10.1021/acs.orglett.5b01488

    40. [40]

      Tang, S.; Liu, K.; Long, Y.; Qi, X. T.; Lan, Y.; Lei, A. W. Chem. Commun. 2015, 51, 8769. doi: 10.1039/C5CC01825K

    41. [41]

      Wu, Y. M.; Zhang, J. M.; Guo, Y. W.; Wang, X. J.; Zhu, Z. T. Synlett 2016, 27, 2259. doi: 10.1055/s-0035-1562115

    42. [42]

      李金恒, 谢叶香, 尹笃林, 有机化学, 2002, 22, 894. doi: 10.3321/j.issn:0253-2786.2002.11.014Li, J.H.; Xie, J. X; Yin, D. L. Chin. J. Org. Chem. 2002, 22, 894(in Chinese). doi: 10.3321/j.issn:0253-2786.2002.11.014

    43. [43]

      余开辉, 张小丽, 胡乔生, 刘良先, 有机化学, 2010, 30, 266.Yu, K.; Zhang, X.; Hu, Q.; Liu, L. Chin. J. Org. Chem. 2010, 30, 266(in Chinese).

    44. [44]

      For selected example of synthesis of diiodoalkynes from intermal alkynes, see: (a) Su, L. ; Lei, C. -Y. ; Fan, W. -Y. ; Liu, L. -X. Synth. Commun. 2011, 41, 1200.
      (b) Liu, Y. ; Huang, D. ; Huang, J. ; Maruoka, K. J. Org. Chem. 2017, 82, 11865.

    45. [45]

      Liu, Y. Synlett 2011, 1184.

    46. [46]

      Dutta, U.; Maity, S.; Kancherla, R.; Maiti, D. Org. Lett. 2014, 16, 6302. doi: 10.1021/ol503025n

    47. [47]

      Dutta, U.; Lupton, D. W.; Maiti, D. Org. Lett. 2016, 18, 860. doi: 10.1021/acs.orglett.6b00147

    48. [48]

      (a) Oliver, D. ; Dino, W. ; Nils, T. ; Nancy, G. ; Francois, D. Org. Lett. 2014, 16, 4722.
      (b) Pelletier, G. ; Lie, S. ; Mousseau, J. J. ; Charette, A. B. Org. Lett. 2012, 14, 5464.
      (c) Dan, L. ; Joaquin, M. A. ; Emil, B. L. ; William, R. D. Chem. Eur. J. 2015, 21, 18122.
      (d) Madabhushi, S. ; Jillella, R. ; R. Mallu, K. K. ; Godala, K. R. ; Vangipuram, V. S. Tetrahedron Lett. 2013, 54, 3993.
      (e) Abe, H. ; Suzuki, H. Bull. Chem. Soc. Jpn. 1999, 72, 787.

  • Scheme 1  Previous methods for the synthesis of iodoalkynes and diiodoalkenes and this work

    Scheme 3  Mechanistic discussion of the formation of iodoalkynes and diiodoalkenes

    Scheme 2  Control experiments

    Table 1.  Optimization of direct iodination of terminal alkyne

    Entry I- reagent
    (equiv.)
    Base
    (equiv.)
    Solvent Yielda/%
    1b NaI (1.5) Et3N (2.0) Toluene Trace
    2b KI (1.5) Et3N (2.0) Toluene Trace
    3b CuI (1.5) Et3N (2.0) Toluene Trace
    4b ZnI2 (1.5) Et3N (2.0) Toluene 35
    5b ZnI2 (1.5) Et3N (2.0) CH3CN Trace
    6b ZnI2 (1.5) Et3N (2.0) THF Trace
    7b ZnI2 (1.5) Et3N (2.0) CHCl3 38
    8b ZnI2 (1.5) Na2CO3 (2.0) CHCl3 Trace
    9b ZnI2 (1.5) DBU (2.0) CHCl3 34
    10b ZnI2 (1.5) Et3N (1.5) CHCl3 62
    11b ZnI2 (1.5) Et3N (1.0) CHCl3 75
    12b ZnI2 (1.5) Et3N (0.5) CHCl3 90
    13c ZnI2 (1.5) Et3N (0.5) CHCl3 86
    14d ZnI2 (1.1) Et3N (0.5) CHCl3 91
    15e ZnI2 (1.1) Et3N (0.5) CHCl3 93
    a Isolated yield; b 1.5 equiv. TBN and 50 ℃; c 1.5 equiv. TBN and room temperature; d 2.0 equiv. TBN and room temperature; e 3.0 equiv. TBN and room temperature.
    下载: 导出CSV

    Table 2.  Synthesis of iodoalkyne

    a Isolated yield.
    下载: 导出CSV

    Table 3.  Synthesis of diiodoalkenes

    a Isolated yields of diiodoalkenes; b isolated yields of iodoalkynes.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  18
  • 文章访问数:  1558
  • HTML全文浏览量:  183
文章相关
  • 发布日期:  2018-05-01
  • 收稿日期:  2017-11-30
  • 修回日期:  2018-01-08
  • 网络出版日期:  2018-05-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章