

Citation: Huang Zhongshou, Zhu Xingliang, He Yungang, Li Fenglei, Meng Tianzhuo, Shi Xiaoxin. Synthesis of the Variously Substituted Nitroalkenes via Ethylenediaminium Trifluoroacetate-Catalyzed Condensation of Nitroalkanes with Aryl Aldehydes[J]. Chinese Journal of Organic Chemistry, 2018, 38(4): 890-895. doi: 10.6023/cjoc201709052

乙二胺三氟乙酸盐催化硝基烷烃与芳香醛缩合制备各种取代的硝基烯烃
English
Synthesis of the Variously Substituted Nitroalkenes via Ethylenediaminium Trifluoroacetate-Catalyzed Condensation of Nitroalkanes with Aryl Aldehydes
-
Key words:
- aldehyde
- / ethylenediaminium trifluoroacetate
- / nitroalkanes
- / nitroalkenes
-
硝基烯烃是一类非常重要的化合物, 它们不仅被广泛地用作有机合成中间体[1], 而且也具有多种生理活性被用于医药和农药研究[2].因此, 发展方便高效的硝基烯烃的合成方法具有良好的意义.硝基烯烃可通过烯烃硝化[3]或硝基烷烃与醛缩合[4]制备得到.硝基烷烃与醛缩合制备硝基烯烃的过程中, 首先发生Henry反应[5]生成β-硝基醇, 然后再脱水生成硝基烯烃.这二步反应也可通过“一锅法”完成, 且更加方便快捷.胺或铵盐可被用作该“一锅法”缩合反应的催化剂[6], 但存在催化剂用量较大、反应收率较低、使用毒性较大的溶剂等缺点.最近我们报道了乙二胺催化的制备硝基烯烃的方法[7], 但该方法需使用硝基甲烷或硝基乙烷作溶剂, 不适用于沸点较高的硝基烷烃.此外, 从绿色化学角度看, 硝基烷烃是环境不友好的溶剂[8].为了克服这些缺点, 本文研究了一种乙二胺三氟乙酸盐催化的高效制备硝基烯烃的通用方法.
1. 结果与讨论
我们以3, 4-二甲氧基苯甲醛和硝基甲烷的缩合作为模型反应, 对反应条件进行了优化, 结果如表 1中所示.
表 1
表 1 以3, 4-二甲氧基苯甲醛与硝基甲烷缩合作为模型反应对反应条件的优化aTable 1. Optimization of reaction conditions for condensation of 3, 4-dimethoxybenzyl aldehyde with nitromethane as the model reactionEntry 催化剂 溶剂 T/℃ t/h Yieldb/% 1 乙二胺三氟乙酸盐(EDA-TFA) DMSO 110 8 95 (100) 2 乙醇胺三氟乙酸盐 DMSO 110 8 55 (60) 3 丁胺三氟乙酸盐 DMSO 110 8 46 (50) 4 乙胺三氟乙酸盐 DMSO 110 8 45 (50) 5 二乙胺三氟乙酸盐 DMSO 110 8 49 (55) 6 四氢吡咯三氟乙酸盐 DMSO 110 8 54 (60) 7 吗啉三氟乙酸盐 DMSO 110 8 58 (60) 8 三乙胺三氟乙酸盐 DMSO 110 10 <5% (5) 9 吡啶三氟乙酸盐 DMSO 110 10 <5% (5) 10 乙二胺乙酸盐 DMSO 110 10 29 (35) 11 乙二胺盐酸盐 DMSO 110 8 24 (30) 12 乙二胺氢溴酸盐 DMSO 110 8 28 (35) 13 乙二胺硫酸盐 DMSO 110 10 9 (10) 14 乙二胺甲磺酸盐 DMSO 110 8 11 (15) 15 乙二胺苯磺酸盐 DMSO 110 8 10 (15) 16 EDA-TFA DMFc 110 12 89 (95) 17 EDA-TFA 1, 4-Dioxane 105d 12 66 (75) 18 EDA-TFA DMEe 83d 15 59 (65) 19 EDA-TFA CH3CN 81d 15 22 (30) 20 EDA-TFA PrOH 97d 15 65 (70) 21 EDA-TFA EtOH 78d 15 54 (65) 22 EDA-TFA Me2CO 76d 20 10 (15) a 2 equiv. of nitromethane and 5 mol% of the catalyst were used. b Isolated yield, conversion as shown in parenthesis was calculated from the 1H NMR spectra of the crude product. c N, N-Dimethylformamide. d Refluxing. e 1, 2-Dimethoxyethane. 首先, 我们观察了乙二胺、乙醇胺、丁胺、乙胺、二乙胺、四氢吡咯、吗啉、三乙胺和吡啶九种胺的三氟乙酸盐在110 ℃下于二甲基亚砜(DMSO)中对反应的催化情况(表 1中Entries 1~9), 发现乙二胺三氟乙酸盐(EDA-TFA, 乙二胺与三氟乙酸的摩尔比为1:2)明显比其他八种铵盐的催化能力强, 当使用EDA-TFA作为催化剂时, 可以高收率获得硝基烯烃1a (Entry 1).接着, 我们尝试用乙酸、盐酸、氢溴酸、硫酸、甲磺酸和苯磺酸与乙二胺的盐(乙二胺与酸的摩尔比均为1:2)作为反应的催化剂(表 1中Entries 10~15), 发现这六种乙二胺的铵盐作催化剂时, 反应收率较低.然后, 我们还尝试了以EDA-TFA作催化剂时, 各种溶剂如N, N-二甲基甲酰胺(DMF)、1, 4-二氧六环、1, 2-二甲氧基乙烷(DME)、乙腈、丙醇、乙醇和丙酮对反应的影响(表 1中Entries 1, 16~22), 发现DMSO及DMF明显比其它溶剂好, 但DMSO比DMF更好, 是该反应的最佳溶剂(对比表 1中Entries 1, 16).
接着, 我们尝试了以EDA-TFA为催化剂(5 mol%)以及DMSO为溶剂情况下醛与各种硝基烷烃的反应, 结果如表 2所示.我们发现该反应的适用范围广泛, 它几乎适用于所有的芳基醛, 以高收率得到相应的硝基烯烃(产物1a~1x); 它也不仅适用于硝基甲烷和硝基乙烷, 而且也适用于位阻较大的、沸点较高的其它的硝基烷烃(产物1o~1x).当我们尝试EDA-TFA催化的α, β-不饱和醛(肉桂醛)与硝基甲烷和硝基乙烷的缩合反应时, 同样能够以较高收率得到1-硝基-1, 3-共轭二烯(产物1y和1z).然而, 该反应不适用于脂肪醛, 当我们尝试EDA-TFA催化硝基甲烷与己醛、辛醛、异丁醛和环己甲醛反应时, 发现反应复杂, 且所得到的硝基烯烃的收率非常低, 主要副产物为脂肪醛自身聚合产物.
表 2
表 2 EDA-TFA催化硝基烷烃与醛缩合生成各种取代的硝基烯烃a, bTable 2. Preparation of variously substituted nitroalkenes via EDA-TFA-catalyzed condensation of nitroalkanes with aldehydesa Reaction conditions: aldehyde (20 mmol), nitroalkane (40 mmol), EDA-TFA (1.0 mmol), DMSO (5 mL). b Isolated yield. 如表 2所示, 我们以82%~96%的高收率获得了二十六种硝基烯烃1a~1z, 所有这些硝基烯烃产物的几何构型都是(E)-式, 而且不含有(Z)-式异构体.可见, 该反应是一个高立体选择性的热力学控制的反应, 因为(E)-式立体异构体比(Z)-式立体异构体热力学上更加稳定.该反应可能的途径如图 1所示, 醛基与硝基中的氧原子同时与EDA-TFA中的双铵离子形成氢键, 发生Henry反应生成中间体β-羟基取代的硝基化合物I~A, 然后该中间体发生反式消除脱水生成(E)-式硝基烯烃[9].
图 1
2. 结论
本文报道了一种简便、高效、实用的制备各种取代硝基烯烃的通用方法.乙二胺三氟乙酸盐(EDA-TFA)是芳香醛与各种硝基烷烃缩合制备硝基烯烃的高效催化剂, 二甲基亚砜(DMSO)是该反应最合适的溶剂.上述EDA-TFA催化的醛与各种硝基烷烃的缩合反应是高立体选择性的热力学控制的反应, 产生的硝基烯烃产物的几何构型均为(E)-式.该EDA-TFA催化的反应普遍适用于芳香醛, 但不适用于脂肪醛.
3. 实验部分
3.1 仪器与试剂
1H NMR和13C NMR光谱使用Bruker AM-400仪器测定.红外光谱使用Nicolet Magna IR-550光谱仪测定. MS光谱使用Shimadzu GC-MS 2010或Mariner Mass Spectrum设备测定.熔点使用Mel-TEMP Ⅱ熔点仪测定.所有试剂和溶剂均是分析纯的.
3.2 实验方法
3.2.1 乙二胺三氟乙酸盐(EDA-TFA)的制备
在0 ℃下向乙二胺(3.005 g, 50.00 mmol)的乙醇(50 mL)溶液中滴加三氟乙酸(12.55 g, 110.1 mmol).加完后, 将反应混合物在室温下继续搅拌2 h.加入乙酸乙酯(100 mL)后, 再搅拌0.5 h, 抽滤得到固体, 并用乙酸乙酯(20mL)漂洗.将白色固体在真空中干燥, 以98%收率得到乙二胺三氟乙酸盐(14.12 g, 49.00 mmol). 1H NMR (400 MHz, DMSO-d6) δ: 2.02 (s, 4H), 7.20 (brs, 6H); 13C NMR (100 MHz, DMSO-d6) δ: 41.84, 112.91 (q, 2JCF=298 Hz), 165.24 (q, 3JCF=32 Hz).
3.2.2 EDA-TFA催化醛与硝基烷烃在DMSO中缩合反应制备硝基烯烃的典型步骤
将3, 4-二甲氧基苯甲醛(3.325 g, 20.01 mmol)、硝基甲烷(2.442 g, 40.01 mmol, DMSO (5 mL)和乙二胺三氟乙酸盐(288.2 mg, 1.000 mmol)在圆底烧瓶(25 mL)中混合.将混合物在氩气保护下, 在110 ℃加热搅拌8 h.反应完成后[TLC, 展开剂: V(EtOAc):V(己烷)=1:5], 将混合物冷却至室温, 加入水(15 mL).剧烈搅拌30 min后, 抽滤得到黄色晶体, 并用少量甲醇水溶液[V(CH3OH):V(H2O)=1:3]漂洗.粗产物通过快速柱层析法[洗脱液: V(EtOAc):V(CH2Cl2):V(己烷)=1:4:9]纯化, 得到硝基烯烃1a 3.974 g, 19.00 mmol, 产率为95%.
硝基烯烃产物1a~1n的结构表征数据与先前报道的数据相同[7], 硝基烯烃1o~1z未见文献报道, 其结构表征数据如下:
(E)-1-(4-羟基苄基)-2-(4-羟基苯基)-1-硝基乙烯(1o):黄色晶体, m.p. 139~140 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 10.30 (brs, 1H), 9.34 (brs, 1H), 8.26 (s, 1H), 7.48 (d, J=8.6 Hz, 2H), 6.99 (d, J=8.4 Hz, 2H), 6.87 (d, J=8.6 Hz, 2H), 6.73 (d, J=8.4 Hz, 2H), 4.15 (s, 2H); 13C NMR (100 MHz, DMSO-d6) δ: 160.23, 156.05, 146.65, 135.54, 132.62 (2C), 128.32 (2C), 126.34, 122.13, 116.15 (2C), 115.57 (2C), 31.66; IR (KBr) ν: 3313, 2957, 1634, 1605, 1583, 1514, 1485, 1305, 1287, 1257, 1233, 1170, 923, 876, 832 cm-1. HRMS (ESI) calcd for C15H13NO4Na [M+Na]+: 294.0742, found 294.0743.
(E)-2-(3, 4-二甲氧基苄基)-1-(4-羟基苯基)-1-硝基乙烯(1p):黄色晶体, m.p. 128~129 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 9.35 (brs, 1H), 8.31 (s, 1H), 7.22 (dd, J=8.5, 1.9 Hz, 1H), 7.15 (d, J=1.9 Hz, 1H), 7.06 (d, J=8.5 Hz, 1H), 7.01 (d, J=8.6 Hz, 2H), 6.74 (d, J=8.6 Hz, 2H), 4.19 (s, 2H), 3.80 (s, 3H), 3.63 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ: 156.06, 151.08, 148.68, 147.42, 135.51, 128.29 (2C), 126.32, 124.29, 123.86, 115.59 (2C), 113.43, 111.86, 55.56, 55.25, 31.78; IR (KBr) ν: 3453, 2962, 1642, 1598, 1511, 1462, 1318, 1267, 1213, 1162, 1147, 1014, 870, 815 cm-1. HRMS (ESI) calcd for C17H17NO5Na [M+Na]+: 338.1004, found 338.1002.
(E)-1-(3, 4-二甲氧基苄基)-2-(4-羟基苯基)-1-硝基乙烯(1q):黄色晶体, m.p. 156~157 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 10.30 (brs, 1H), 8.30 (s, 1H), 7.48 (d, J=8.7 Hz, 2H), 6.90~6.83 (m, 4H), 6.63 (d, J=8.2 Hz, 1H), 4.20 (s, 2H), 3.72 (s, 3H), 3.71 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ: 160.27, 148.94, 147.60, 146.24, 135.94, 132.64 (2C), 128.70, 122.12, 118.50, 116.16 (2C), 112.03, 111.59, 55.43, 55.38, 32.06; IR (KBr) ν: 3343, 2963, 1645, 1607, 1586, 1512, 1463, 1307, 1317, 1282, 1236, 1220, 1173, 1142, 1023, 874, 763 cm-1. HRMS (ESI) calcd for C17H17NO5Na [M+Na]+: 338.1004, found 338.1000.
(E)-1-(3, 4-二甲氧基苄基)-2-(3, 4-二甲氧基苯基)-1-硝基乙烯(1r):黄色晶体, m.p. 140~141 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.34 (s, 1H), 7.21 (dd, J=8.5, 1.9 Hz, 1H), 7.16 (d, J=1.9 Hz, 1H), 7.06 (d, J=8.5 Hz, 1H), 6.88 (d, J=8.4 Hz, 1H), 6.87 (s, 1H), 6.64 (d, J=8.4 Hz, 1H), 4.24 (s, 2H), 3.79 (s, 3H), 3.72 (s, 3H), 3.71 (s, 3H), 3.63 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ: 151.11, 148.97, 148.69, 147.62, 147.04, 135.87, 128.70, 124.24, 123.85, 118.54, 113.50, 112.03, 111.90, 111.51, 55.59, 55.44, 55.39, 55.27, 32.17; IR (KBr) ν: 2954, 2929, 2839, 1637, 1593, 1519, 1502, 1457, 1441, 1314, 1271, 1259, 1240, 1188, 1143, 1035, 1017, 859, 808 cm-1. HRMS (ESI) calcd for C19H21NO6Na [M+Na]+: 382.1267, found 382.1265.
(E)-1-胡椒基-2-(3, 4-二甲氧基苯基)-1-硝基乙烯(1s):黄色晶体, m.p. 98~99 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.28 (s, 1H), 7.10 (dd, J=8.4, 1.9 Hz, 1H), 6.94 (d, J=1.9 Hz, 1H), 6.90 (d, J=8.4 Hz, 1H), 6.76 (d, J=7.9 Hz, 1H), 6.71 (s, 1H), 6.68 (d, J=7.9 Hz, 1H), 5.94 (s, 2H), 4.24 (s, 2H), 3.91 (s, 3H), 3.73 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ: 151.29, 149.21, 148.20, 147.52, 146.56, 135.98, 130.00, 124.44, 124.30, 120.35, 112.59, 111.35, 108.62, 108.15, 101.12, 56.01, 55.83, 32.84; IR (KBr) ν: 2934, 1640, 1597, 1557, 1520, 1504, 1488, 1463, 1442, 1359, 1314, 1268, 1145, 1022, 923, 867, 809 cm-1. HRMS (ESI) calcd for C18H17NO6Na [M+Na]+: 366.0954, found 366.0952.
(E)-1-胡椒基-2-(3-甲氧基-4-羟基苯基)-1-硝基乙烯(1t):黄色晶体, m.p. 118~119 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.26 (s, 1H), 7.05 (d, J=8.3 Hz, 1H), 6.94 (t, J=8.3 Hz, 1H), 6.93 (s, 1H), 6.76 (d, J=8.0 Hz, 1H), 6.71 (s, 1H), 6.68 (d, J=8.0 Hz, 1H), 5.97 (s, 1H), 5.94 (s, 2H), 4.22 (s, 2H), 3.76 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ: 148.24, 148.20, 147.34, 146.79, 146.55, 136.13, 130.04, 124.90, 124.00, 120.36, 115.15, 112.23, 108.62, 108.15, 101.12, 55.90, 32.83; IR (KBr) ν: 3464, 2923, 1667, 1648, 1593, 1556, 1521, 1494, 1447, 1430, 1320, 1302, 1272, 1209, 1178, 1125, 1032, 924, 812, 731 cm-1. HRMS (ESI) calcd for C17H15NO6Na [M+Na]+: 352.0797, found 352.0794.
(E)-2-(3, 4-二甲氧基苯基)-1-(3, 4, 5-三甲氧基苄基)-1-硝基乙烯(1u):黄色晶体, m.p. 144~145 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.32 (s, 1H), 7.12 (dd, J=8.4, 1.9 Hz, 1H), 6.96 (d, J=1.9 Hz, 1H), 6.91 (d, J=8.4 Hz, 1H), 6.44 (s, 2H), 4.28 (s, 2H), 3.92 (s, 3H), 3.85 (s, 3H), 3.81 (s, 3H), 3.80 (s, 3H), 3.72 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ: 153.64 (2C), 151.35, 149.22, 147.19, 136.91, 136.32, 132.05, 124.41, 124.26, 112.61, 111.37, 104.41 (2C), 60.86, 56.14 (2C), 56.02, 55.77, 33.36; IR (KBr) ν: 2935, 1634, 1594, 1518, 1494, 1464, 1425, 1312, 1267, 1199, 1127, 1020, 1002, 862 cm-1. HRMS (ESI) calcd for C20H23NO7Na [M+Na]+: 412.1372, found 412.1360.
(E)-2-(4-羟基-3-甲氧基苯基)-1-(3, 4, 5-三甲氧基苄基)-1-硝基乙烯(1v):黄色晶体, m.p. 172~173 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.31 (s, 1H), 7.08 (dd, J=8.3, 1.9 Hz, 1H), 6.96 (d, J=8.3 Hz, 1H), 6.93 (d, J=1.9 Hz, 1H), 6.43 (s, 2H), 6.03 (brs, 1H), 4.26 (s, 2H), 3.82 (s, 3H), 3.80 (s, 3H), 3.79 (s, 3H), 3.73 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ: 153.65 (2C), 148.34, 147.01, 146.83, 136.90, 136.47, 132.12, 124.88, 123.96, 115.20, 112.22, 104.42 (2C), 60.88, 56.15 (2C), 55.83, 33.37; IR (KBr) ν: 3298, 2927, 1645, 1596, 1510, 1459, 1432, 1327, 1297, 1283, 1127, 996, 867 cm-1. HRMS (ESI) calcd for C19H21NO7Na [M+Na]+: 398.1216, found 398.1210.
(E)-1-(4-羟基-3-甲氧基苄基)-2-(4-羟基苯基)-1-硝基乙烯(1w):黄色晶体, m.p. 142~143 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.26 (s, 1H), 7.37 (d, J=8.6 Hz, 2H), 6.88 (d, J=8.1 Hz, 1H), 6.84 (d, J=8.6 Hz, 1H), 6.71 (d, J=1.9 Hz, 1H), 6.68 (dd, J=8.1, 1.9 Hz, 1H), 6.25 (brs, 1H), 5.67 (brs, 1H), 4.20 (s, 2H), 3.82 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ: 158.25, 147.57, 146.90, 144.40, 135.86, 132.26 (2C), 128.14, 124.19, 120.00, 116.32 (2C), 114.73, 110.43, 55.95, 32.65; IR (KBr) ν: 3449, 3297, 2923, 1637, 1604, 1518, 1493, 1434, 1304, 1276, 1121, 1177, 1118, 1030, 871, 835, 754 cm-1. HRMS (ESI) calcd for C16H15NO5Na [M+Na]+: 324.0848, found 324.0850.
(E)-2-(3, 4-二甲氧基苯基)-1-(4-羟基-3-甲氧基苄基)-1-硝基乙烯(1x):黄色晶体, m.p. 104~105 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.28 (s, 1H), 7.11 (dd, J=8.4, 1.9 Hz, 1H), 6.96 (d, J=1.9 Hz, 1H), 6.90 (d, J=8.4 Hz, 1H), 6.86 (d, J=8.7 Hz, 1H), 6.72 (s, 1H), 6.71 (d, J=8.7 Hz, 1H), 5.58 (brs, 1H), 4.25 (s, 2H), 3.91 (s, 3H), 3.84 (s, 3H), 3.71 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ: 151.26, 149.20, 147.68, 146.92, 144.60, 135.90, 128.07, 124.53, 124.32, 120.00, 114.72, 112.58, 111.33, 110.20, 56.00, 55.94, 55.80, 32.79; IR (KBr) ν: 3475, 2933, 1637, 1597, 1511, 1457, 1435, 1313, 1265, 1237, 1180, 1145, 1031, 1016, 922, 868, 815 cm-1. HRMS (ESI) calcd for C18H19NO6Na [M+Na]+: 368.1110, found 368.1111.
(1E, 3E)-1-硝基-4-苯基-1, 3-丁二烯(1y):黄色晶体, m.p. 115~116 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 7.68 (dd, J=11.6, 13.2 Hz, 1H), 7.46~7.40 (m, 2H), 7.35~7.28 (m, 3H), 7.15 (d, J=13.2 Hz, 1H), 7.05 (d, J=15.4 Hz, 1H), 6.77 (dd, J=11.6, 15.4 Hz, 1H); 13C NMR (100 MHz, DMSO-d6) δ: 145.01, 138.17, 137.56, 134.11, 129.29, 128.00 (2C), 126.71 (2C), 119.56; IR (KBr) ν: 3101, 2925, 1622, 1593, 1514, 1493, 1345, 1330, 1150, 991, 970, 822, 763, 708 690 cm-1. HRMS (ESI) calcd for C10H9NO2Na [M+Na]+: 198.0531, found 198.0528.
(1E, 3E)-1-甲基-1-硝基-4-苯基-1, 3-丁二烯(1z):黄色晶体, m.p. 160~161 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 7.77 (d, J=11.5 Hz, 1H), 7.54~5.49 (m, 2H), 7.42~7.35 (m, 3H), 7.09 (d, J=15.4 Hz, 1H), 6.90 (dd, J=11.5, 15.4 Hz, 1H), 2.36 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ: 146.33, 143.97, 135.69, 133.74, 129.90, 129.00 (2C), 127.62 (2C), 121.27, 13.06; IR (KBr) ν: 3040, 2932, 1635, 1515, 1435, 1387, 1308, 1163, 1071, 966, 873, 762, 724, 693 cm-1. HRMS (ESI) calcd for C11H11NO2Na [M+Na]+: 212.0687, found 212.0985.
辅助材料(Supporting Information) 硝基烯烃1o~1z和乙二胺三氟乙酸盐的1H NMR和13C NMR的图谱.这些材料可以免费从本刊网站(http://sioc-journal.cn/)上下载.
-
-
[1]
(a) Wang, Y.; Du, Y.; Huang, X.; Wu, X.; Zhang, Y.; Yang, S.; Chi, Y. R. Org. Lett. 2017, 19, 632.
(b) Potter, T. J.; Kamber, D. N.; Mercado, B. Q.; Ellman, J. A. ACS Catal. 2017, 7, 150.
(c) Li, D.; Liu, L.; Tian, Y.; Ai, Y.; Tang, Z.; Sun, H.-B.; Zhang, G. Tetrahedron 2017, 73, 3959.
(d) Liu, L.; Ai, Y.; Li, D.; Qi, L.; Zhou, J.; Tang, Z.; Shao, Z.; Liang, Q.; Sun, H.-B. ChemCatChem 2017, 9, 3131.
(e) Lian, X.-L.; Meng, J.; Han, Z.-Y. Org. Lett. 2016, 18, 4270.
(f) Matsuda, Y.; Koizumi, A.; Haraguchi, R.; Fukuzawa, S.-I. J. Org. Chem. 2016, 81, 7939.
(g) Bai, X.-F.; Song, T.; Xu, Z.; Xia, C.-G.; Huang, W.-S.; Xu, L.-W. Angew. Chem., Int. Ed. 2015, 54, 5255.
(h) Yang, Y.; Du, D. Chin. J. Chem. 2014, 32, 853.
(i) Phelan, J. P.; Patel, E. J.; Ellman, J. A. Angew. Chem., Int. Ed. 2014, 53, 11329.
(j) Kumar, R.; Kumar, T.; Mobin, S. M.; Mambothiri, I. N. N. J. Org. Chem. 2013, 78, 5073.
(k) Chen, L.-A.; Xu, W.; Huang, B.; Ma, J.; Wang, L.; Xi, J.; Harms, K.; Gong, L.; Meggers, E. J. Am. Chem. Soc. 2013, 135, 10598.
(l) Boyce, G. R.; Liu, S.; Johnson, J. S. Org. Lett. 2012, 14, 652.
(m) Dong, W.; Xu, D.; Xie, J. Chin. J. Chem. 2012, 30, 1771.
(n) Wan, N.; Hui, Y.; Xie, Z.; Wang, J. Chin. J. Chem. 2012, 30, 311.
(o) Ma, S.; Wu, L.; Liu, M.; Wang, Y. Chin. J. Chem. 2012, 30, 2707.
(p) Wu, J.; Li, X.; Wu, F.; Wan, B. Org. Lett. 2011, 13, 4834.
(q) Sukhorukov, A. Y.; Boyko, Y. D.; Ioffe, S. L.; Khomutova, Y. A.; Nelyubina, Y. V.; Tartakovsky, V. A. J. Org. Chem. 2011, 76, 7893.
(r) Arai, T.; Wasai, M.; Yokoyama, N. J. Org. Chem. 2011, 76, 2909.
(s) Nakamura, A.; Lectard, S.; Hashizume, D.; Hamashima, Y.; Sodeoka, M. J. Am. Chem. Soc. 2010, 132, 4036.
(t) Li, Q.; Ding, C.-H.; Hou, X.-L.; Dai, L.-X. Org. Lett. 2010, 12, 1080.
(u) Arai, T.; Mishiro, A.; Yokoyama, N.; Suzuki, K.; Sato, H. J. Am. Chem. Soc. 2010, 132, 5338.
(v) Guan, X.-Y.; Wei, Y.; Shi, M. Org. Lett. 2010, 12, 5024.
(w) O'Connor, C. J.; Roydhouse, M. D.; Przybyl, A. M.; Wall, M. D.; Southern, J. M. J. Org. Chem. 2010, 75, 2534.
(x) Wu, M.; Wang, S.; Xia, C.; Sun, W. Chin. J. Chem. 2010, 28, 1424. -
[2]
(a) Bates, D. J. P.; Smitherman, P. K.; Townsend, A. J.; King, S. B.; Morrow, C. S. Biochemistry 2011, 50, 7765.
(b) Tang, X.; Guo, Y.; Nakamura, K.; Huang, H.; Hamblin, M.; Chang, L.; Villacorta, L.; Yin, K.; Ouyang, H.; Zhang, J. Biochem. Biophy. Res. Commun. 2010, 397, 239.
(c) Gorczynski, M. J.; Smitherman, P. K.; Akiyama, T. E.; Wood, H. B.; Berger, J. P.; King, S. B.; Morrow, C. S. J. Med. Chem. 2009, 52, 4631.
(d) Wang, W.-Y.; Hsieh, P.-W.; Wu, Y.-C.; Wu, C.-C. Biochem. Pharmacol. 2007, 74, 601.
(e) Gorczynski, M. J.; Huang, J.; Lee, H.; King, S. B. Bioorg. Med. Chem. Lett. 2007, 17, 2013.
(f) Milhazes, N.; Calheiros, R.; Marques, M. P. M.; Garrido, J.; Cordeiro, M. N. D. S.; Rodrigues, C.; Quinteira, S.; Novais, C.; Peixe, L.; Borges, F. Bioorg. Med. Chem. 2006, 14, 4078.
(g) Mohan, R.; Rastogi, N.; Namboothiri, I. N. N.; Mobin, S. M.; Panda, D. Bioorg. Med. Chem. 2006, 14, 8073.
(h) Gorczynski, M. J.; Huang, J.; King, S. B. Org. Lett. 2006, 8, 2305. -
[3]
(a) Motornov, V. A.; Muzalevskiy, V. M.; Tabolin, A. A.; Novikov, R. A.; Nelyubina, Y. V.; Nenajdenko, V. G.; Ioffe, S. L. J. Org. Chem. 2017, 82, 5274.
(b) Maity, S.; Manna, S.; Rana, S.; Naveen, T.; Mallick, A.; Maiti, D. J. Am. Chem. Soc. 2013, 135, 3355.
(c) Naveen, T.; Maity, S.; Sharma, U.; Maiti, D. J. Org. Chem. 2013, 78, 5949.
(d) Maity, S.; Naveen, T.; Sharma, U.; Maiti, D. Org. Lett. 2013, 15, 3384.
(e) Manna, S.; Jana, S.; Saboo, T.; Maji, A.; Maiti, D. Chem. Commun. 2013, 49, 5286. -
[4]
(a) Hass, H. B.; Riley, E. F. Chem. Rev. 1943, 32, 373.
(b) Ballini, R.; Castagnani, R.; Petrini, M. J. Org. Chem. 1992, 57, 2160.
(c) Concellon, J. M.; Bernard, P. L.; Rodriguez-Solla, H.; Concellon, C. J. Org. Chem. 2007, 72, 5421.
(d) Liu, Y.-Y.; Wang, S.-W.; Zhang, L.-J.; Wu, Y.-J.; Li, Q.-H.; Yang, G.-S.; Xie, M.-H. Chin. J. Chem. 2008, 26, 2267.
(e) Alizadeh, A.; Khodaei, M. M.; Eshghi, A. J. Org. Chem. 2010, 75, 8295.
(f) Rokhum, L.; Bez, G. Tetrahedron Lett. 2013, 54, 5500. -
[5]
(a) Henry, L. Bull. Soc. Chim. Fr. 1895, 13, 999.
(b) Rosini, G. Ballini, R. Synthesis 1988, 833.
(c) Ballini, R.; Bosica, G. J. Org. Chem. 1997, 62, 425.
(d) Kisanga, P. B.; Verkade, J. G. J. Org. Chem. 1999, 64, 4298.
(e) Luzzio, F. A. Tetrahedron 2001, 57, 915. -
[6]
(a) Xi, B.-M.; Jiang, Z.-Z.; Zou, J.-W.; Ni, P.-Z.; Chen, W.-H. Bioorg. Med. Chem. 2011, 19, 783.
(b) McNamara, Y. M.; Cloonan, S. M.; Knox, A. J. S.; Keating, J. J.; Butler, S. G.; Peters, G. H.; Meagan, M. J.; Williams, D. C. Bioorg. Med. Chem. 2011, 19, 1328.
(c) Rodríguez, J. M; Pujol, M. D. Tetrahedron Lett. 2011, 52, 2629.
(d) Kim, G.-J.; Kim, H.-J. Tetrahedron Lett. 2010, 51, 185.
(e) Cheng, P.; Jiang, Z.-Y.; Wang, R.-R.; Zhang, X.-M.; Wang, Q.; Zheng, Y.-T.; Zhou, J.; Chen, J.-J. Biorg. Med. Chem. Lett. 2007, 17, 4476.
(f) Elsner, J.; Boeckler, F.; Davidson, K.; Sugden, D.; Gmeiner, P. Bioorg. Med. Chem. 2006, 14, 1949.
(g) Huh, S.; Chen, H.-T.; Wiench, J. W.; Pruski, M.; Lin, V. S.-Y. J. Am. Chem. Soc. 2004, 126, 1010.
(h) Osuna, M. R.; Aguirre, G.; Somanathan, R.; Molins, E. Tetrahedron:Asymmetry 2002, 13, 2261.
(i) Degnan, A. P.; Meyers, A. I. J. Org. Chem. 2000, 65, 3503. -
[7]
Yang, J.; Dong, J.; Lu, X.; Zhang, Q.; Ding, W.; Shi, X. Chin. J. Chem. 2012, 30, 2827. doi: 10.1002/cjoc.v30.12
-
[8]
Ren, Y.; Li, M.; Yang, J.; Peng, J.; Gu, Y. Adv. Synth. Catal. 2011, 353, 3473. doi: 10.1002/adsc.201100530
-
[9]
Ballini, R.; Castagnai, R.; Petrini, M. J. Org. Chem. 1992, 57, 2160. doi: 10.1021/jo00033a045
-
[1]
-
表 1 以3, 4-二甲氧基苯甲醛与硝基甲烷缩合作为模型反应对反应条件的优化a
Table 1. Optimization of reaction conditions for condensation of 3, 4-dimethoxybenzyl aldehyde with nitromethane as the model reaction
Entry 催化剂 溶剂 T/℃ t/h Yieldb/% 1 乙二胺三氟乙酸盐(EDA-TFA) DMSO 110 8 95 (100) 2 乙醇胺三氟乙酸盐 DMSO 110 8 55 (60) 3 丁胺三氟乙酸盐 DMSO 110 8 46 (50) 4 乙胺三氟乙酸盐 DMSO 110 8 45 (50) 5 二乙胺三氟乙酸盐 DMSO 110 8 49 (55) 6 四氢吡咯三氟乙酸盐 DMSO 110 8 54 (60) 7 吗啉三氟乙酸盐 DMSO 110 8 58 (60) 8 三乙胺三氟乙酸盐 DMSO 110 10 <5% (5) 9 吡啶三氟乙酸盐 DMSO 110 10 <5% (5) 10 乙二胺乙酸盐 DMSO 110 10 29 (35) 11 乙二胺盐酸盐 DMSO 110 8 24 (30) 12 乙二胺氢溴酸盐 DMSO 110 8 28 (35) 13 乙二胺硫酸盐 DMSO 110 10 9 (10) 14 乙二胺甲磺酸盐 DMSO 110 8 11 (15) 15 乙二胺苯磺酸盐 DMSO 110 8 10 (15) 16 EDA-TFA DMFc 110 12 89 (95) 17 EDA-TFA 1, 4-Dioxane 105d 12 66 (75) 18 EDA-TFA DMEe 83d 15 59 (65) 19 EDA-TFA CH3CN 81d 15 22 (30) 20 EDA-TFA PrOH 97d 15 65 (70) 21 EDA-TFA EtOH 78d 15 54 (65) 22 EDA-TFA Me2CO 76d 20 10 (15) a 2 equiv. of nitromethane and 5 mol% of the catalyst were used. b Isolated yield, conversion as shown in parenthesis was calculated from the 1H NMR spectra of the crude product. c N, N-Dimethylformamide. d Refluxing. e 1, 2-Dimethoxyethane. 表 2 EDA-TFA催化硝基烷烃与醛缩合生成各种取代的硝基烯烃a, b
Table 2. Preparation of variously substituted nitroalkenes via EDA-TFA-catalyzed condensation of nitroalkanes with aldehydes
a Reaction conditions: aldehyde (20 mmol), nitroalkane (40 mmol), EDA-TFA (1.0 mmol), DMSO (5 mL). b Isolated yield. -

计量
- PDF下载量: 9
- 文章访问数: 1404
- HTML全文浏览量: 298