Citation: Wang Jingjing, Li Feng, Xu Yan, Wang Juan, Wu Ziyan, Yang Chengyu, Liu Lantao. Catalytic Nucleophilic Addition of 3, 5-Dialkyl-4-nitroisoxazoles to Trifluoromethyl Ketones on Water[J]. Chinese Journal of Organic Chemistry, ;2018, 38(5): 1155-1164. doi: 10.6023/cjoc201709049 shu

Catalytic Nucleophilic Addition of 3, 5-Dialkyl-4-nitroisoxazoles to Trifluoromethyl Ketones on Water

  • Corresponding author: Wang Jingjing, wangjingjing0918@163.com Liu Lantao, liult05@iccas.ac.cn
  • Received Date: 29 September 2017
    Revised Date: 29 December 2017
    Available Online: 10 May 2018

    Fund Project: the National Natural Sciences Foundation of China 21572126the Key Science Research of Education Committee in Henan Province 15A150072the Key Scientific and Technological Project of Henan Province 172102210099the National Natural Sciences Foundation of China 21402116Project supported by the National Natural Sciences Foundation of China (Nos. 21402116, 21502111, 21572126), the Key Scientific and Technological Project of Henan Province (No. 172102210099) and the Key Science Research of Education Committee in Henan Province (No. 15A150072)the National Natural Sciences Foundation of China 21502111

Figures(3)

  • The triethylamine catalyzed nucleophilic addition of 3, 5-dialkyl-4-nitroisoxazoles to trifluoromethyl ketones on water has been realized affording trifluoromethyl tertiary alcohol derivatives in 66%~99% yields. The products were easily transformed to the resulting alkenes by dehydration or acids by oxidation.
  • 加载中
    1. [1]

      (a) Welch, J. T. ; Eswarakrishman, S. Fluorine in Bioorganic Chemistry, Wiley, New York, 1991.
      (b) Filler, R. ; Kobayashi, Y. ; Yagupolskii, L. M. Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications, Elsevier, Amsterdam, 1993.
      (c) Banks, R. E. ; Smart, B. E. ; Tatlow, C. J. Organofluorine Chemistry: Principles and Comercial Applications, Springer, New York, 1994.
      (d) Hiyama, T. ; Kanie, K. ; Kusumoto, T. ; Morizawa, Y. ; Shimizu, M. Organofluorine Compounds: Chemistry and Applications, Springer-Verlag, Berlin, 2000.
      (e) Kirsch, P. Modern Fluoroorganic Chemistry, Wiley-VCH, Weinheim, 2005.
      (f) Uneyama, K. Organofluorine Chemistry, Blackwell, Oxford, 2007.
      (g) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwell, Chichester, 2009.

    2. [2]

      (a) Kirk, K. L. J. Fluorine Chem. 2006, 127, 1013.
      (b) Mîller, K. ; Faeh, C. ; Diederich, F. Science 2007, 317, 1881.
      (c) Purser, S. ; Moore, P. R. ; Swallow, S. ; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (d) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
      (e) Berger, R. ; Resnati, G. ; Metrangolo, P. ; Weber, E. ; Hulliger, J. Chem. Soc. Rev. 2011, 40, 3496.
      (f) Ojima, I. J. Org. Chem. 2013, 78, 6358.
      (g) Fujiwara, T. ; O_Hagan, D. J. Fluorine Chem. 2014, 167, 16.
      (h) Wang, J. ; Sánchez-Roselló, M. ; Aceñ a, J. L. ; Pozo, C. ; Sorochinsky, A. E. ; Fustero, S. ; Soloshonok, V. A. ; Liu, H. Chem. Rev. 2014, 114, 2432.
      (i) Gillis, E. P. ; Eastman, K. J. ; Hill, M. D. ; Donnelly, D. J. ; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315.

    3. [3]

      (a) Pierce, M. E. ; Rodney, L. P. J. ; Radesca, L. A. ; Lo, Y. S. ; Silverman, S. ; Moore, J. R. ; Islam, Q. ; Choudhury, A. ; Fortunak, J. M. D. ; Nguyen, D. ; Luo, C. ; Morgan, S. J. ; Davis, W. P. ; Confalone, P. N. ; Chen, C. -Y. ; Tillyer, R. D. ; Frey, L. ; Tan, L. ; Xu, F. ; Zhao, D. ; Thompson, A. S. ; Corley, E. G. ; Grabowski, E. J. J. ; Reamer, R. ; Reider, P. J. J. Org. Chem. 1998, 63, 8536.
      (b) Corbett, J. W. ; Ko, S. S. ; Rodgers, J. D. ; Gearhart, L. A. ; Magnus, N. A. ; Bacheler, L. T. ; Diamond, S. ; Jeffrey, S. ; Klabe, R. M. ; Cordova, B. C. ; Garber, S. ; Logue, K. ; Trainor, G. L. ; Anderson, P. S. ; Erickson-Viitanen, S. K. J. Med. Chem. 2000, 43, 2019.

    4. [4]

      Schenck, H. A.; Lenkowski, P. W.; Choudhury-Mukherjee, I.; Ko, S.-H.; Stables, J. P.; Patel, M. K.; Brown, M. L. Bioorg. Med. Chem. 2004, 12, 979.  doi: 10.1016/j.bmc.2003.12.011

    5. [5]

      Fandrick, D. R.; Reeves, J. T.; Bakonyi, J. M.; Nyalapatla, P. R.; Tan, Z.; Niemeier, O.; Akalay, D.; Fandrick, K. R.; Wohlleben, W.; Ollenberger, S.; Song, J. J.; Sun, X.; Qu, B.; Haddad, N.; Sanyal, S.; Shen, S.; Ma, S.; Byrne, D.; Chitroda, A.; Fuchs, V.; Narayanan, B. A.; Grinberg, N.; Lee, H.; Yee, N.; Brenner, M.; Senanayake, C. H. J. Org. Chem. 2013, 78, 3592.  doi: 10.1021/jo400080y

    6. [6]

      (a) Betageri, R. ; Zhang, Y. ; Zindell, R. M. ; Kuzmich, D. ; Kirrane, T. M. ; Bentzien, J. ; Cardozo, M. ; Capolino, A. J. ; Fadra, T. N. ; Nelson, R. M. ; Paw, Z. ; Shih, D. -T. ; Shih, C. -K. ; Zuvela-Jelaska, L. ; Nebozny, G. ; Thomson, D. Bioorg. Med. Chem. Lett. 2005, 15, 4761.
      (b) Barker, M. ; Clackers, M. ; Copley, R. ; Demaine, D. A. ; Humphreys, D. ; Inglis, G. G. A. ; Johnston, M. J. ; Jones, H. T. ; Haase, M. V. ; House, D. ; Loiseau, R. ; Nisbet, L. ; Pacquet, F. ; Skone, P. A. ; Shanahan, S. E. ; Tape, D. ; Vinader, V. M. ; Washington, M. ; Uings, I. ; Upton, R. ; McLay, I. M. ; Macdonald, S. J. F. J. Med. Chem. 2006, 49, 4216.

    7. [7]

      (a) Sani, M. ; Viani, F. ; Binda, M. ; Zaffaroni, N. ; Zanda, M. Lett. Org. Chem. 2005, 2, 447.
      (b) Betageri, R. ; Gilmore, T. ; Kuzmich, D. ; Kirrane, T. M. ; Bentzien, J. ; Wiedenmayer, D. ; Bekkali, Y. ; Regan, J. ; Berry, A. ; Latli, B. ; Kukulka, A. J. ; Fedra, T. N. ; Nelson, R. N. ; Goldrick, S. ; Zuvela-Jelaska, L. ; Souza, D. ; Pelletier, J. ; Dinallo, R. ; Panzenbeck, M. ; Torcellini, C. ; Lee, H. ; Pack, E. ; Harcken, C. ; Nabozny, G. ; Thomson, D. S. Bioorg. Med. Chem. Lett. 2011, 21, 6842.

    8. [8]

      Carceller, E.; Merlos, M.; Giral, M.; Balsa, D.; Garcıía-Rafanell, J.; Forn, J. J. Med. Chem. 1996, 39, 487.  doi: 10.1021/jm950555i

    9. [9]

      For reviews, see: (a) Nie, J. ; Guo, H. -C. ; Cahard, D. ; Ma, J. -A. Chem. Rev. 2011, 111, 455.
      (b) Kelly, C. B. ; Mercadante, M. A. ; Leadbeater, N. E. Chem. Commun. 2013, 49, 11133.

    10. [10]

      For selected examples: (a) Hara, N. ; Tamura, R. ; Funahashi, Y. ; Nakamura, S. Org. Lett. 2011, 13, 1662.
      (b) Zhang, G. -W. ; Meng, W. ; Ma, H. ; Nie, J. ; Zhang, W. -Q. ; Ma, J. -A. Angew. Chem., Int. Ed. 2011, 50, 3538.
      (c) Cui, H. -F. ; Wang, L. ; Yang, L. -J. ; Nie, J. ; Zheng, Y. ; Ma, J. -A. Tetrahedron 2011, 67, 8470.
      (d) Li, X. -J. ; Xiong, H. -Y. ; Hua, M. -Q. ; Nie, J. ; Zheng, Y. ; Ma, J. -A. Tetrahedron Lett. 2012, 53, 2117.
      (e) Zheng, Y. ; Xiong, H. -Y. ; Nie, J. ; Hua, M. -Q. ; Ma, J. -A. Chem. Commun. 2012, 48, 4308.
      (f) Luo, R. ; Li, K. ; Hu, Y. ; Tang, W. Adv. Synth. Catal. 2013, 355, 1297.
      (g) Zong, H. ; Huang, H. ; Bian, G. ; Song, L. J. Org. Chem. 2014, 79, 11768.
      (h) Wang, L. ; Liu, N. ; Dai, B. ; Ma, X. ; Shi, L. RSC Adv. 2015, 5, 10089.
      (i) Jamal, Z. ; Teo, Y. -C. RSC Adv. 2015, 5, 26949.
      (j) Zhang, D. ; Tanaka, F. Adv. Synth. Catal. 2015, 357, 3458.
      (k) Tao, R. ; Yin, X. -J. ; Wang, K. -H. ; Niu, Y. -Z. ; Wang, Y. -L. ; Huang, D. -F. ; Su, Y. -P. ; Wang, J. -X. ; Hu, Y. -L. ; Fu, Y. ; Du, Z. -Y. Chin. Chem. Lett. 2015, 26, 1046.
      (l) Jing, Z. ; Bai, X. ; Chen, W. ; Zhang, G. ; Zhu, B. ; Jiang, Z. Org. Lett. 2016, 18, 260.
      (m) Lutete, L. M. ; Miyamoto, T. ; Ikemoto, T. Tetrahedron Lett. 2016, 57, 1220.
      (n) Cook, A. M. ; Wolf, C. Angew. Chem., Int. Ed. 2016, 55, 2929.
      (o) Lee, K. ; Silverio, D. L. ; Torker, S. ; Robbins, D. W. ; Haeffner, F. ; Mei, F. W. ; Hoveyda, A. H. Nat. Chem. 2016, 8, 768.
      (p) Matador, E. ; Monge, D. ; Fernández, R. ; Lassaletta, J. M. Green Chem. 2016, 18, 4042.
      (q) Mszar, N. W. ; Mikus, M. S. ; Torker, S. ; Haeffner, F. ; Hoveyda, A. H. Angew. Chem., Int. Ed. 2017, 56, 8736.
      (r) Noda, H. ; Amemiya, F. ; Weidner, K. ; Kumagai, N. ; Shibasaki, M. Chem. Sci. 2017, 8, 3260.
      (s) Bai, X. ; Zeng, G. ; Shao, T. ; Jiang, Z. Angew. Chem., Int. Ed. 2017, 56, 3684.
      (t) Zheng, Y. ; Tan, Y. ; Harms, K. ; Marsch, M. ; Riedel, R. ; Zhang, L. ; Meggers, E. J. Am. Chem. Soc. 2017, 139, 4322.

    11. [11]

      Bandini, M.; Sinisi, R. Org. Lett. 2009, 11, 2093.  doi: 10.1021/ol9005079

    12. [12]

      Zhang, Y.; Wei, B.-W.; Zou, L.-N.; Kang, M.-L.; Luo, H.-Q.; Fan, X.-L. Tetrahedron 2016, 72, 2472.  doi: 10.1016/j.tet.2016.03.072

    13. [13]

      Czerwinski, P.; Molga, E.; Cavallo, L.; Poater, A.; Michalak, M. Chem. Eur. J. 2016, 22, 8089.  doi: 10.1002/chem.201601581

    14. [14]

      (a) Grieco, P. A. Organic Synthesis in Water, Blackie, London, 1998.
      (b) Lindstrom, U. M. Organic Reactions in Water: Principles, Strategies and Applications, Blackwell, Oxford, U. K., 2007.
      (c) Li, C. -J. ; Chan, T. -H. Comprehensive Organic Reactions in Aqueous Media, Wiley, New York, 2007.

    15. [15]

      For selected reviews: (a) Lindstrom, U. M. Chem. Rev. 2002, 102, 2751.
      (b) Head-Gordon, T. ; Hura, G. Chem. Rev. 2002, 102, 2651.
      (c) Hayashi, Y. Angew. Chem., Int. Ed. 2006, 45, 8103.
      (d) Mase, N. ; Barbas Ⅲ, C. F. Org. Biomol. Chem. 2010, 8, 4043.

    16. [16]

      For selected reviews: (a) Li, C. -J. Chem. Rev. 2005, 105, 3095.
      (b) Li, C. -J. ; Chen, L. Chem. Soc. Rev. 2006, 35, 68.
      (c) Chanda, A. ; Fokin, V. V. Chem. Rev. 2009, 109, 725.
      (d) Butler, R. N. ; Coyne, A. G. Chem. Rev. 2010, 110, 6302.
      (e) Simon, M. -O. ; Li, C. -J. Chem. Soc. Rev. 2012, 41, 1415.
      (f) Gawande, M. B. ; Bonifacio, V. D. B. ; Luque, R. ; Branco, P. S. ; Varma, R. S. Chem. Soc. Rev. 2013, 42, 5522.
      (g) Levin, E. ; Ivry, E. ; Diesendruck, C. E. ; Lemcoff, N. G. Chem. Rev. 2015, 115, 4607.
      (h) Butler, R. N. ; Coyne, A. G. Org. Biomol. Chem. 2016, 14, 9945.

    17. [17]

      For selected examples: (a) Phippen, C. B. W. ; Beattie, J. K. ; McErlean, C. S. P. Chem. Commun. 2010, 46, 8234.
      (b) Fu, X. -P. ; Liu, L. ; Wang, D. ; Chen, Y. -J. ; Li, C. -J. Green. Chem. 2011, 13, 549.
      (c) Sakakura, A. ; Koshikari, Y. ; Akakura, M. ; Ishihara, K. Org. Lett. 2011, 14, 30.
      (d) Paladhi, S. ; Chauhan, A. ; Dhara, K. ; Tiwari, A. K. ; Dash, J. Green. Chem. 2012, 14, 2990.
      (e) Islam, S. ; Larrosa, I. Chem. Eur. J. 2013, 19, 15093.
      (f) Sengoden, M. ; Punniyamurthy, T. Angew. Chem. Int. Ed. 2013, 52, 572.
      (g) Paladhi, S. ; Bhati, M. ; Panda, D. ; Dash, J. J. Org. Chem. 2014, 79, 1473.
      (h) Thakur, P. B. ; Meshram, H. M. RSC Adv. 2014, 4, 5343.
      (i) Thakur, P. B. ; Meshram, H. M. RSC Adv. 2014, 4, 6019.
      (j) Yu, J. -S. ; Liu, Y. -L. ; Tang, J. ; Wang, X. ; Zhou, J. Angew. Chem. Int. Ed. 2014, 53, 9512.
      (k) Yang, F. ; Klumphu, P. ; Liang, Y. -M. ; Lipshutz, B. H. Chem. Commun. 2014, 50, 936.
      (l) Zhang, F. -Z. ; Tian, Y. ; Li, G. -X. ; Qu, J. J. Org. Chem. 2015, 80, 1107.
      (m) SaiPrathima, P. ; Srinivas, K. ; Mohan Rao, M. Green. Chem. 2015, 17, 2339.
      (n) Bhattacharjya, A. ; Klumphu, P. ; Lipshutz, B. H. Nat. Commun. 2015, 6, 7401.
      (o) Cho, B. S. ; Chung, Y. K. Chem. Commun. 2015, 51, 14543.
      (p) Xiao, J. ; Wen, H. ; Wang, L. ; Xu, L. ; Hao, Z. ; Shao, C. -L. ; Wang, C. -Y. Green Chem. 2016, 18, 1032.
      (q) Zhang, Y. ; Wei, B. -W. ; Lin, H. ; Zhang, L. ; Liu, J. -X. ; Luo, H. -Q. ; Fan, X. -L. Green Chem. 2015, 17, 3266.
      (r) Ren, N. ; Nie, J. ; Ma, J. -A. Green Chem. 2016, 18, 6609.

    18. [18]

      (a) Wang, J. ; Kong, W. -G. ; Li, F. ; Liu, J. ; Shen, Q. ; Liu, L. ; Zhao, W. -X. Org. Biomol. Chem. 2015, 13, 5399.
      (b) Li, F. ; Wang, J. ; Xu, M. ; Zhao, X. ; Zhou, X. ; Zhao, W. -X. ; Liu, L. Org. Biomol. Chem. 2016, 14, 3981.
      (c) Wang, J. ; Li, F. ; Shen, Q. ; Pei, W. ; Zhao, W. -X. ; Liu, L. Synthesis 2016, 48, 441.
      (d) Wang, J. ; Li, F. ; Xie, H. ; Xu, M. ; Zhao, X. ; Liu, L. ; Zhao, W. -X. Appl. Organomet. Chem. 2017, 31, e3545.

    19. [19]

      CCDC 1558716(3a) and CCDC 1559048(5) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

    20. [20]

      (a) Creary, X. J. Org. Chem. 1987, 52, 5026.
      (b) Chong, J. M. ; Mar, E. K. J. Org. Chem. 1991, 56, 893.
      (c) Prakash, G. K. S. ; Panja, C. ; Vaghoo, H. ; Surampudi, V. ; Kultyshev, R. ; Mandal, M. ; Rasul, G. ; Mathew, T. ; Olah, G. A. J. Org. Chem. 2006, 71, 6806.
      (d) Cheng, H. ; Pei, Y. ; Leng, F. ; Li, J. ; Liang, A. ; Zou, D. ; Wu, Y. ; Wu, Y. Tetrahedron Lett. 2013, 54, 4483.

    21. [21]

      (a) Adamo, M. F. A. ; Duffy, E. F. Org. Lett. 2006, 8, 5157.
      (b) Adamo, M. F. A. ; Suresh, S. Tetrahedron 2009, 65, 990.
      (c) Zhang, J. ; Liu, X. ; Ma, X. ; Wang, R. Chem. Commun. 2013, 49, 9329.

    22. [22]

      Gao, J.-R.; Wu, H.; Xiang, B.; Yu, W.-B.; Han, L.; Jia, Y.-X. J. Am. Chem. Soc. 2013, 135, 2983.  doi: 10.1021/ja400650m

    23. [23]

      Fiandra, C. D.; Piras, L.; Fini, F.; Disetti, P.; Moccia, M.; Adamo, M. F. A. Chem. Commun. 2012, 48, 3863.  doi: 10.1039/c2cc30401e

    24. [24]

      McBee, E. T.; Kim, Y. S.; Braendlin, H. P. J. Am. Chem. Soc. 1962, 84, 3154.  doi: 10.1021/ja00875a023

  • 加载中
    1. [1]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    2. [2]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    3. [3]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    4. [4]

      Lina WangHairu WangQian BuQiong MeiJunbo ZhongBo BaiQizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139

    5. [5]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    6. [6]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    7. [7]

      Wenjie Jiang Zhixiang Zhai Xiaoyan Zhuo Jia Wu Boyao Feng Tianqi Yu Huan Wen Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519

    8. [8]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    9. [9]

      Hailang DengAbebe Reda WolduAbdul QayumZanling HuangWeiwei ZhuXiang PengPaul K. ChuLiangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892

    10. [10]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    11. [11]

      Jingyu ChenSha WuYuhao WangJiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102

    12. [12]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    13. [13]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    14. [14]

      Han YuanFengcai ZhangHongzhe HuangJiafei WuYi YangWanyi HuangDongjing YangZhuoming LiZhe LiLing HuangYi-You HuangHai-Bin LuoLei Guo . Discovery of 3-trifluoromethyl-substituted pyrazoles as selective phosphodiesterase 10A inhibitors for orally attenuating isoprenaline-induced cardiac hypertrophy. Chinese Chemical Letters, 2025, 36(4): 109965-. doi: 10.1016/j.cclet.2024.109965

    15. [15]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    16. [16]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    17. [17]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    18. [18]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    19. [19]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    20. [20]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

Metrics
  • PDF Downloads(4)
  • Abstract views(782)
  • HTML views(107)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return