Citation: Cai Liu, Lü Liu, Wang Mengying, Wu Yusheng, Huang Jinfeng, Zeng Xiangchao. Synthesis and Photophysical Properties of Multi-aryl Imidazoles Containing Nitrogen Heterocyclic Ring[J]. Chinese Journal of Organic Chemistry, ;2018, 38(5): 1126-1137. doi: 10.6023/cjoc201709046 shu

Synthesis and Photophysical Properties of Multi-aryl Imidazoles Containing Nitrogen Heterocyclic Ring

  • Corresponding author: Zeng Xiangchao, xczeng@126.com
  • Received Date: 29 September 2017
    Revised Date: 21 December 2017
    Available Online: 18 May 2018

    Fund Project: the National University Student Innovation Program of China 201610559039Project supported by the National University Student Innovation Program of China (No. 201610559039)

Figures(8)

  • A series of novel imidazole derivatives containing indole or carbazole unit were efficiently synthesized via one-pot reaction of benzil/9, 10-phenanthraquinone, indole-3-carbaldehyde/carbazole-3-carbaldehyde and ammonium acetate utilizing glacial acetic acid as solvent and catalyst. The effects of selection and amount of solvents, molar ratio of the reagents, and temperature on the reactions have been surveyed. The photophysical properties of the synthesized products were also investigated, and two compounds possessing structural characteristics and pH-sensitive were selected as pH fluorescent probes. Furthermore, the fluorescence imaging of MCF-7 cells in different pH environments in the presence of the probe 2-(9-benzyl- 9H-carbazol-3-yl)-1H-4, 5-diphenylimidazole (2d) or 2-(9-benzyl-9H-carbazol-3-yl)-1H-phenanthro [9, 10-d]imidazole (4) was detected, and the results revealed that the two probes show promising potential to be used in detecting pH changes in living cells as pH fluorescent probes.
  • 加载中
    1. [1]

      Golovina, V.-A.; Blaustein, M.-P. Science 1997, 275, 1643.  doi: 10.1126/science.275.5306.1643

    2. [2]

      Ishaque, A.; Al-Rubeai, M.-J. Immunol. Methods 1998, 221, 43.  doi: 10.1016/S0022-1759(98)00166-5

    3. [3]

      Anderson, R.-G.; Orci, W.-L. J. Cell Biol. 1988, 106, 539.  doi: 10.1083/jcb.106.3.539

    4. [4]

      Gillies, R.-J.; Raghunand, N.; Garcia-Martin, M.-L.; Gatenby, R.-A. IEEE Eng. Med. Biol. 2004, 23, 57.
       

    5. [5]

      Izumi, H.; Torigoe, T.; Ishiguchi, H.; Uramoto, H.; Yoshida, Y.; Tanabe, M.; Ise, T.; Murakami, T.; Yoshida, T.; Nomoto, M.; Kohno, K. Cancer Treat. Rev. 2003, 29, 541.  doi: 10.1016/S0305-7372(03)00106-3

    6. [6]

      Vingtdeux, V.; Hamdane, M.; Bégard, S.; Loyens, A.; Delacourte, A.; Beauvillain, J.-C.; Buée, L.; Marambaud, P.; Sergeant, N. Neurobiol. Dis. 2007, 25, 686.  doi: 10.1016/j.nbd.2006.09.019

    7. [7]

      Fang, B.-Y.; Wang, D.-J.; Huang, M.-F.; Yu, G.-H.; Li, H. Int. J. Neurosci. 2010, 120, 591.  doi: 10.3109/00207454.2010.505353

    8. [8]

      Gottlieb, R.-A.; Giesing, H.-A.; Zhu, J.-Y.; Engler, R.-L.; Babior, B.-M. Proc. Natil. Acad. Sci. U. S. A. 1995, 92, 5965.  doi: 10.1073/pnas.92.13.5965

    9. [9]

      Su, M.-H.; Liu, Y.; Ma, H.-M.; Ma, Q.-L.; Wang, Z.-H.; Yang, J.-L.; Wang, M.-X. Chem. Commun. 2001, 32, 960.
       

    10. [10]

      Xu, Y.; Jiang, Z.; Xiao, Y.; Bi, F.-Z.; Miao, J.-Y.; Zhao, B.-X. Anal. Chim. Acta. 2014, 820, 146.  doi: 10.1016/j.aca.2014.02.029

    11. [11]

      Fan, L.; Gao, S.-Q.; Li, Z.-B.; Niu, W.-F.; Zhang, W.-J.; Shuang, S.-M.; Dong, C. Sens. Actuators, B 2015, 221, 1069.  doi: 10.1016/j.snb.2015.07.076

    12. [12]

      Niu, W.-F.; Fan, L.; Nan, M.; Li, Z.-B.; Lu, D.-T.; Wong, M.-S.; Shuang, S.-M.; Dong, C. Anal. Chem. 2015, 87, 2788.  doi: 10.1021/ac504109h

    13. [13]

      Chao, J. B.; Liu, Y.-H.; Sun, J.-Y.; Fan, L.; Zhang, Y.-B.; Tong, H.-H.; Li, Z.-Q. Sens. Actuators, B 2015, 221, 427.  doi: 10.1016/j.snb.2015.06.087

    14. [14]

      Zhang, X.; Jing, S.-Y.; Huang, S.-Y.; Zhou, X.-W.; Bai, J.-M.; Zhao, B.-X. Sens. Actuators, B 2015, 206, 663.  doi: 10.1016/j.snb.2014.09.107

    15. [15]

      Ma, Z.-Q.; Hu, L.; Zhong, C.; Zhang, H.; Liu, B.-F.; Liu, Z.-H. Sens. Actuators, B 2015, 219, 179.  doi: 10.1016/j.snb.2015.05.024

    16. [16]

      Chen, S.; Hong, Y.; Liu, Y.; Liu, J.; Leung, C. W. T.; Li, M.; Kwok, R. T. K.; Zhao, E.; Lam, J. W. Y.; Yu, Y.; Tang, B.-Z. J. Am. Chem. Soc. 2013, 135, 4926.  doi: 10.1021/ja400337p

    17. [17]

      Ge, F.-Y.; Yan, X.-L.; Yan, F.-Y.; Pan, H.-Y.; Chen, L.-G. J. Fluoresc. 2005, 15, 829.  doi: 10.1007/s10895-005-0016-1

    18. [18]

      Shen, S.-L.; Chen, X.-P.; Zhang, X.-F.; Miao, J.-Y.; Zhao, B.-X. J. Mater. Chem. B 2015, 3, 919.
       

    19. [19]

      Urano, Y.; Asanuma, D.; Hama, Y.; Koyama, Y.; Barrett, T.; Kamiya, M. Nat. Med. 2009, 15, 104.  doi: 10.1038/nm.1854

    20. [20]

      Myochin, T.; Kiyose, K.; Hanaoka, K.; Kojima, H.; Terai, T.; Nagano, T. J. Am. Chem. Soc. 2011, 133, 3401.  doi: 10.1021/ja1063058

    21. [21]

      Ai, H.-W.; Shaner, N.-C.; Cheng, Z.; Tsien, R.-Y.; Campbell, R.-E. Biochemistry 2007, 46, 5904.  doi: 10.1021/bi700199g

    22. [22]

      Nienhaus, K.; Nienhaus, G.-U.; Wiedenmann, J.; Nar, H.; Wolynes, P.-G. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 9156.  doi: 10.1073/pnas.0501874102

    23. [23]

      Dong, J.; Solntsev, K.-M.; Poizat, O.; Tolbert, L.-M. J. Am. Chem. Soc. 2007, 129, 10084.  doi: 10.1021/ja073622u

    24. [24]

      Shaner, N.-C.; Steinbach, P.-A.; Tsien, R.-Y. Nat. Methods 2005, 2, 905.  doi: 10.1038/nmeth819

    25. [25]

      Shaner, N.-C.; Campbell, R.-E.; Steinbach, P.-A.; Giepmans, B.-N.; Palmer, A.-E.; Tsien, R.-Y. Nat. Biotechnol. 2004, 22, 1567.  doi: 10.1038/nbt1037

    26. [26]

      Zhang, R.; Li, J.-T.; Fu, C.-L.; Luo, X.-T. Mater. Rev. 2011, 25, 61(in Chinese).
       

    27. [27]

      Moon, H.; Hwang, J.; Kim, N.; Park, S.-Y. Macromolecules 2000, 33, 5116.  doi: 10.1021/ma992071s

    28. [28]

      Li, Q.-Q.; Li, Z.; Qin, J.-G. Prog. Chem. 2009, 21, 12(in Chinese).
       

    29. [29]

      Xiao, L.-W.; Peng, X.-X.; Zhou, Q.-X.; Kou, W.; Shi, Y.-R. Chin. J. Org. Chem. 2015, 35, 1204(in Chinese).
       

    30. [30]

      Safari, J.; Khalili, S.-D.; Banitaba, S.-H. Synth. Commun. 2011, 41, 2359.  doi: 10.1080/00397911.2010.502994

    31. [31]

      Xiao, L.-W.; Gao, H.-J.; Kong, J.; Liu, G.-X.; Li, L.-L.; Duan, J.-D. Chin. J. Org. Chem. 2014, 34, 2511(in Chinese).
       

    32. [32]

      Kannan, V.; Sreekumar, K. J. Mol. Catal. A:Chem. 2013, 376, 34.  doi: 10.1016/j.molcata.2013.04.004

    33. [33]

      Li, B.-Z.; Gu, Q.; He, Y.-H.; Zhao, T.-Q.; Wang, S.-J.; Kang, J.; Zhang, Y.-M. C. R. Chim. 2012, 15, 784.  doi: 10.1016/j.crci.2012.06.005

    34. [34]

      Li, B.-Z.; Gu, Q.; Zhao, T.-Q.; He, Y.-H.; Tong, Y.-N.; Zhang, Y.-M. Chin. J. Org. Chem. 2012, 31, 1459(in Chinese).
       

    35. [35]

      Tian, M.; Wang, C.; Wang, L.; Luo, K.; Zhao, A.; Guo, C. Luminescence 2013, 29, 540.

    36. [36]

      Jezewski, A.; Hammann, T.; Cywinski, P.-J.; Gryko, D.-T. J. Phys. Chem. B 2015, 119, 2507.  doi: 10.1021/jp507992x

    37. [37]

      Ramezanalizadeh, H.; Manteghi, F. Monatsh. Chem. 2017, 148, 347.  doi: 10.1007/s00706-016-1776-9

    38. [38]

      Al-Qawasmeh, R.-A.; Huesca, M.; Nedunuri, V.; Peralta, R.; Wright, J.; Lee, Y.; Young, A. Bioorg. Med. Chem. Lett. 2010, 20, 3518.  doi: 10.1016/j.bmcl.2010.04.137

    39. [39]

      Sharghi, H.; Aberi, M.; Doroodmand, M.-M. Mol. Diversity 2015, 19, 77.  doi: 10.1007/s11030-014-9558-y

    40. [40]

      Teimouri, A.; Chermahini, A.-N. J. Mol. Catal. A:Chem. 2011, 346, 39.  doi: 10.1016/j.molcata.2011.06.007

    41. [41]

      Park, S.; Kwon, J.-E.; Park, S.-Y. Phys. Chem. Chem. Phys. 2012, 14, 8878.  doi: 10.1039/c2cp23894b

    42. [42]

      Hranjec, M.; Horak, E.; Babić, D.; Plavljanin, S.; Srdović, Z.; Steinberg, I.-M.; Vianello, R.; Perin, N. New J. Chem. 2017, 41, 358.  doi: 10.1039/C6NJ02268E

    43. [43]

      Wu, Y.-C.; You, J.-Y.; Jiang, K.; Xie, J.-C.; Li, S.-L.; Cao, D.; Wang, Z.-Y. Dyes Pigm. 2017, 140, 47.  doi: 10.1016/j.dyepig.2017.01.025

    44. [44]

      Feng, H.; Thanhthuy, T.-T.; Chen, L.; Yuan, L.; Cai, Q. Chem. Eng. J. 2013, 215, 591.

    45. [45]

      Hagberg, D.-P.; Edvinsson, T.; Marinado, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. Chem. Commun. 2006, 21, 2245.

    46. [46]

      Ishiyama, H.; Yoshizawa, K.; Kobayashi, J. Tetrahedron 2012, 68, 6186.  doi: 10.1016/j.tet.2012.05.071

    47. [47]

      Lin, Z.-Q.; Zeng, X.-C.; Meng, Y.-X. Chin. J. Org. Chem. 2015, 35, 490(in Chinese).
       

    48. [48]

      Bian, L.; Zeng, X.-C.; He, R.; Luo, C.-L.; Lin, Z.-Q. Chin. J. Org. Chem. 2014, 34, 994(in Chinese).
       

    49. [49]

      Zhang, W.-S.; Tang, B; Liu, X; Liu, Y.-Y.; Xu, K.-H.; Ma, J.-P.; Tong, L.-L.; Yang, G.-W. Analyst 2009, 134, 367.  doi: 10.1039/B807581F

    50. [50]

      Zhu, Q.; Li, Z.; Mu, L.; Zeng, X.; Redshaw, C.; Wei, G. Spectrochim. Acta, Part A 2017, 188, 230.

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    3. [3]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    4. [4]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    5. [5]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    6. [6]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    9. [9]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    10. [10]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    11. [11]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    14. [14]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    15. [15]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    16. [16]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    17. [17]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    20. [20]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

Metrics
  • PDF Downloads(10)
  • Abstract views(1901)
  • HTML views(559)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return