Citation: Huang Qing, Qu Wenjuan, Chen Jie, Lin Qi, Yao Hong, Zhang Youming, Wei Taibao. A Reaction Type Colorimetric and Fluorescence Chemosensor Based on Coumarin Derivatives Design for Detecting Cyanide Ion and Its Application[J]. Chinese Journal of Organic Chemistry, ;2018, 38(3): 629-635. doi: 10.6023/cjoc201709040 shu

A Reaction Type Colorimetric and Fluorescence Chemosensor Based on Coumarin Derivatives Design for Detecting Cyanide Ion and Its Application

  • Corresponding author: Wei Taibao, weitaibao@126.com
  • Received Date: 25 September 2017
    Revised Date: 31 October 2017
    Available Online: 17 March 2017

    Fund Project: the National Natural Science Foundation of China 21661028the National Natural Science Foundation of China 21262032the National Natural Science Foundation of China 21662031the National Natural Science Foundation of China 21574104Project supported by the National Natural Science Foundation of China (Nos. 21662031, 21661028, 21574104, 21262032)

Figures(9)

  • A novel CN- chemosensor based N-4-pyridylcoumarin-3-carboxamide derivative Q1 was designed and synthesized. The recognition performance of sensor Q1 for ten different anions was studied by UV and fluorescence spectroscopy. When anions such as CN-, F-, Cl-, Br-, I-, AcO-, H2PO4-, HSO4-, ClO4- and SCN- were added to the mixed solution (DMSO/H2O, V:V=9:1), addition of CN- could increase the absorption peak of Q1 at 304 nm, and the corresponding fluorescence produced a strong emission peak at 431 nm. Q1 solution with CN- emitted strong blue fluorescent that can be easily observed by naked eyes. The color changed (from colorless to faint yellow) and the "Turn-On" fluorescence behavior suggested that Q1 could detect CN- by dual-channel. Happily, the fluorescent limit of detection (LOD) is 1.44×10-8 mol/L, was lower than the specified content by World Health Organization (WHO) in drinking water. Based on all the experimental facts, we speculated that the possible identification mechanism was that the addition reaction took place between Q1 and CN-, and it can also be confirmed by density functional theory (DFT). This result can be applied to the detection of CN- in cherry kernel.
  • 加载中
    1. [1]

      Zamecnik, J.; Tam, J. J. Anal. Toxicol. 1987, 11, 47.  doi: 10.1093/jat/11.1.47

    2. [2]

      Anderson, R. A.; Harland, W. A. Med. Sci. Law. 1982, 22, 35.  doi: 10.1177/002580248202200106

    3. [3]

      Suzuki, T.; Hioki, A.; Kurahashi, M. Anal. Chim. Acta 2003, 476, 159.  doi: 10.1016/S0003-2670(02)01362-4

    4. [4]

      Christison, T. T.; Rohrer, J. S.; J. Chromatogr., A 2007, 1155, 31.  doi: 10.1016/j.chroma.2007.02.083

    5. [5]

      Surleva, A. R.; Nikolova, V. D.; Neshkova, M. T. Anal. Chim. Acta 2007, 583, 174.  doi: 10.1016/j.aca.2006.09.044

    6. [6]

      Yen, S.; Wang, C.-T.; Wang, J.-S. Chem. Eng. Commun. 1991, 109, 167.  doi: 10.1080/00986449108910979

    7. [7]

      Bhalla, V.; Singh, H.; Kumar, M. Dalton Trans. 2012, 41, 11413.  doi: 10.1039/c2dt31244a

    8. [8]

      Chattaraj, S.; Das, A. K. Analyst 1991, 116, 739.  doi: 10.1039/an9911600739

    9. [9]

      Zhang, Y.-M.; Shi, B.-B.; Zang, P.; Huo, J. Q.; Chen, P.; Lin, Q.; Liu, J.; Wei, T.-B. Sci. China, Chem. 2013, 56, 612.  doi: 10.1007/s11426-012-4798-0

    10. [10]

      Lin, Q.; Liu, X.; Chen, P.; Wei, T.-B.; Zhang, Y.-M. Prog. Chem. 2013, 25, 2131(in Chinese).
       

    11. [11]

      Li, W.-T.; Qu, W-J.; Zhang, H.-L.; Li, X.; Lin, Q.; Yao, H.; Zhang, Y.-M.; Wei, T.-B. Chin. J. Org. Chem. 2017, 37, 754(in Chinese).
       

    12. [12]

      Li, X.; Lin, Q.; Qu, W-J.; Li, Q.; Chen, X.-B.; Li, W.-T.; Zhang, Y.-M.; Yao, H.; Wei, T.-B. Chin. J. Org. Chem. 2017, 37, 889(in Chinese).
       

    13. [13]

      Lin, Q.; Fu, Y.-P.; Chen, P.; Wei, T.-B.; Zhang, Y.-M. Dyes Pigm. 2013, 96, 1.  doi: 10.1016/j.dyepig.2012.06.023

    14. [14]

      Zhang, Y.-M.; Lin, Q.; Wei, T.-B.; Li, Y.; Qin, X.-P. Chem. Commun. 2009, 40, 6074.
       

    15. [15]

      Lin, Q.; Wei, T.-B.; Yao, H.; Zhang, Y.-M. Acta Chim. Sinica 2007, 65, 159(in Chinese).
       

    16. [16]

      Lee, K. H.; Chai, H. B.; Tamez, P. A. Phytochemistry 2003, 64, 535.  doi: 10.1016/S0031-9422(03)00243-7

    17. [17]

      Pai, N. R.; Vishwasrao, S.; Wankhede, K. J. Chem. Pharm. Res. 2012, 4, 4946.
       

    18. [18]

      Kudo, E.; Taura, M.; Matsuda, K.; Shimamoto, M.; Kariya, R.; Goto, H.; Hattori, S.; Kimura, S.; Okada, S. Bioorg. Med. Chem. Lett. 2013, 23, 606.  doi: 10.1016/j.bmcl.2012.12.034

    19. [19]

      Jung, J. C.; Kin, J.; Park, O. S. Synth. Commun. 2001, 31, 1195.  doi: 10.1081/SCC-100104003

    20. [20]

      Anand, P.; Singh, B.; Singh, N. Bioorg. Med. Chem. 2012, 20, 1175.  doi: 10.1016/j.bmc.2011.12.042

    21. [21]

      Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y. Chem. Rev. 2010, 110, 2620.  doi: 10.1021/cr900263j

    22. [22]

      Huang, X.-H.; Zhang, G.-X.; Zhang, D.-Q. Acta Chim. Sinica 2012, 70, 2133(in Chinese).
       

    23. [23]

      Ma, W.-H.; Xia, W.; Xu, Q.; Han, H.-Y.; Song, B.; Sun, L.-W.; Liang, C.-H. Acta Chim. Sinica 2012, 70, 917(in Chinese).  doi: 10.3866/PKU.WHXB201201172

    24. [24]

      Liu, G.; Cao, H.-Y.; Shao, J. Chin. J. Org. Chem. 2011, 31, 1678(in Chinese).
       

    25. [25]

      Roy, N.; Dutta, A.; Mondal, P.; Paul, P. C.; Takhellambam, S. S. Sens. Actuators, B 2016, 236, 719.  doi: 10.1016/j.snb.2016.06.061

    26. [26]

      Hu, J.-H.; Sun, Y.; Qi, J.; Li, Q.; Wei, T.-B. Spectrochim. Acta, Part A 2017, 175, 125.  doi: 10.1016/j.saa.2016.12.009

    27. [27]

      Zhang, P.; Zhang, Y.-M.; Lin, Q.; Yao, H.; Wei, T.-B. Chin. J. Org. Chem. 2014, 34, 1300(in Chinese).
       

    28. [28]

      Hossain, S. M.; Singh, K.; Lakma, A.; Pradhan, R. N.; Singh, A. K. Sens. Actuators, B 2017, 239, 1109..  doi: 10.1016/j.snb.2016.08.093

    29. [29]

      Gao, Y.; Liu, H.-M.; Li, P.; Liu, Q.-L.; Wang, W.; Zhao, B. Tetrahedron Lett. 2017, 58, 2193.  doi: 10.1016/j.tetlet.2017.04.054

    30. [30]

      Wang, S.-J.; Li, C.-W.; Li, J.; Chen, B.; Guo, Y. Acta Chim. Sinica 2017, 75, 383(in Chinese).
       

    31. [31]

      Ma, L.-L.; Leng, T.-H.; Wang, K.; Wang, C.-Y.; Shen, Y.-J.; Zhu, W.-H. Tetrahedron 2017, 73, 1306.  doi: 10.1016/j.tet.2017.01.034

    32. [32]

      Hu, J.-H.; Li, J.-B.; Qi, J.; Sun, Y. N. J. Chem. 2015, 39, 4041.
       

    33. [33]

      Saha, S.; Ghosh, A.; Mahato, P.; Mishra, S.; Mishra, S. K.; Suresh, E.; Das, S.; Das, A. Org. Lett. 2010, 12, 3406.  doi: 10.1021/ol101281x

    34. [34]

      Kumari, N.; Jha, S.; Bhattacharya, S. J. Org. Chem. 2011, 76, 8215.  doi: 10.1021/jo201290a

    35. [35]

      Lin, Q.; Chen, P.; Fu, Y.-P.; Zhang, Y.-M.; Shi, B.-B.; Zhang, P.; Wei, T.-B. Chin. Chem. Lett. 2013, 24, 699.  doi: 10.1016/j.cclet.2013.05.005

    36. [36]

      Li, W.-T.; Qu, W.-J.; Zhu, X.; Li, Q.; Zhang, H.-L.; Yao, H.; Lin, Q.; Zhang, Y.-M.; Wei, T.-B. Sci. China Chem. 2017, 60, 1.
       

    37. [37]

      Lin, Q.; Chen, P.; Liu, J.; Fu, Y.-P.; Zhang, Y.-M.; Wei, T.-B. Dyes Pigm. 2013, 98, 100.  doi: 10.1016/j.dyepig.2013.01.024

    38. [38]

      Zhu, X.; Lin, Q.; Lou, J.-C.; Lu, T.-T.; Zhang, Y.-M.; Wei, T.-B. New J. Chem. 2015, 39, 7206.  doi: 10.1039/C5NJ01158B

    39. [39]

      Leng, Y.-L.; Zhang, J.-H.; Li, Q.; Zhang, Y.-M.; Lin, Q.; Yao, H.; Wei, T.-B. New J. Chem. 2016, 40, 8607.  doi: 10.1039/C6NJ00181E

    40. [40]

      Wang, L.-Y.; Ye, D.-C.; Cao, D.-R. J. South China Univ. Technol. 2012, 40, 46(in Chinese).
       

    41. [41]

      Li, Q.; Zhang, J. H.; Cai, Y., Qu.; W. J.; Gao, G. Y.; Lin, Q.; Yao, H.; Zhang, Y.-M.; Wei, T.-B. Tetrahedron 2015, 71, 857.  doi: 10.1016/j.tet.2014.12.047

  • 加载中
    1. [1]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    2. [2]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    3. [3]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    4. [4]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007

    5. [5]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    6. [6]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    7. [7]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    8. [8]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    9. [9]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    10. [10]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    11. [11]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    12. [12]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    13. [13]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    14. [14]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    15. [15]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    16. [16]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Lin LILe CHENLingjie HOUJiaqi JINGJiayu DINGTao ZHOURuiping ZHANG . Smartphone-assisted fluorescent silver nanoclusters as ratiometric sensor for visual colorimetric detection of sulfide. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2261-2271. doi: 10.11862/CJIC.20250130

    19. [19]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    20. [20]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

Metrics
  • PDF Downloads(14)
  • Abstract views(1557)
  • HTML views(226)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return