Citation: Yan Jun, Ji Xiaoyue, Hua Shugui, Wang Jing. Recent Advances of α-Aryl Vinyl Azides in Nitrogen Heterocycle Synthesis[J]. Chinese Journal of Organic Chemistry, ;2018, 38(4): 791-801. doi: 10.6023/cjoc201709025 shu

Recent Advances of α-Aryl Vinyl Azides in Nitrogen Heterocycle Synthesis

  • Corresponding author: Hua Shugui, huashugui@jssnu.edu.cn
  • Received Date: 15 September 2017
    Revised Date: 13 October 2017
    Available Online: 15 April 2017

    Fund Project: the Natural Science Foundation of Jiangsu Province BK20130748Project supported by the Natural Science Foundation of Jiangsu Province (No. BK20130748)

Figures(20)

  • Nitrogen heterocyclic compounds can be found in various natural products, pharmaceutical chemistry and material chemistry. Due to azide group linked to olefins, α-aryl vinyl azide has unique properties, which can act as electrophilic reagents, nucleophilic reagent, or radical acceptor. Diverse reaction pathways of α-aryl vinyl azide provide great opportunities to generate highly reactive intermediates with unusual or unconventional reactivities, making it possible to develop novel reaction. Recently, more and more synthetic chemists used α-aryl vinyl azide as a key three atoms synthon for the construction of diverse structurally complex N-heterocyclic compounds. This review will introduce systematically the reactivities of α-aryl vinyl azide and the developments of the recent application of α-aryl vinyl azide in nitrogen heterocycle synthesis, including mechanism, reaction characteristics and application study, thus it may be helpful for the research on nitrogen heterocycle synthesis.
  • 加载中
    1. [1]

      For selected reviews, see: (a) Carey, J. S. ; Laffan, D. ; Thomson, C. ; Williams, M. T. Org. Biomol. Chem. 2006, 4, 2337.
      (b) Welsch, M. E. ; Snyder, S. A. ; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347.
      (c) Dandapani, S. ; Marcaurelle, L. A. Curr. Opin. Chem. Biol. 2010, 14, 362.
      (d) Tohme, R. ; Darwiche, N. ; Gali-Muhtasib, H. Molecules 2011, 16, 9665.
      (e) Thomas, G. L. ; Johannes, C. W. Curr. Opin. Chem. Biol. 2011, 15, 516.
      (f) Zhang, Z. ; Zheng, X. ; Guo, C. Chin. J. Org. Chem. 2016, 36, 1241.
      (g) Zhang, J. ; Liu, J. ; Ma, Y. ; Cheng, P. Chin. J. Org. Chem. 2017, 37, 555.

    2. [2]

      For recent reviews, see: (a) Gribble, G. W. ; Joule, J. A. Progress in Heterocyclic Chemistry, Vol. 20, Elsevier, Oxford, 2008, and others in this series.
      (b) Katritzky, A. R. ; Ramsden, C. A. ; Scriven, E. F. V. ; Taylor, R. J. K. Comprehensive Heterocyclic Chemistry Ⅲ, Pergamon, Oxford, 2008.
      (c) Katritzky, A. R. ; Rees, C. W. ; Scriven, E. F. V. ; McKillop, A. Comprehensive Heterocyclic Chemistry Ⅱ, Pergamon, Oxford, 1996and references therein.

    3. [3]

      (a) Hassner, A. ; Fowler, F. W. J. Org. Chem. 1968, 33, 2686.
      (b) Brä se, S. ; Gil, C. ; Knepper, K. ; Zimmermann, V. Angew. Chem. , Int. Ed. 2005, 44, 5188.
      (c) Gu, P. ; Su, Y. ; Wu, X. P. ; Sun, J. ; Liu, W. ; Xue, P. ; Li, R. Org. Lett. 2012, 14, 2246.

    4. [4]

      (a) Nair, V. ; Tesmol, G. G. Tetrahedron Lett. 2000, 41, 3199.
      (b) Zhu, W. ; Ma, D. Chem. Commun. 2004, 888.
      (c) Telvekar, V. N. ; Takale, B. S. ; Bachhav, H. M. Tetrahedron Lett. 2009, 50, 5056.
      (d) Kupracz, L. ; Hartwig, J. ; Wegner, J. ; Ceylan, S. ; Kirschning, A. Beilstein J. Org. Chem. 2011, 7, 1441.
      (e) Li, X. ; Liao, S. ; Wang, Z. ; Zhang, L. Org. Lett. 2017, 19, 3687.

    5. [5]

      Griess, P. Liebigs Ann. Chem. 1866, 137, 39.

    6. [6]

      For recent reviews on organic azides, see: (a) Brä se, S. ; Gil, C. ; Knepper, K. ; Zimmermann, V. Angew. Chem. , Int. Ed. 2005, 44, 5188.
      (b) Moses, J. E. ; Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249.
      (c) Driver, T. G. Org. Biomol. Chem. 2010, 8, 3831.

    7. [7]

      Select examples: (a) Chiba, S. ; Wang, Y. -F. ; Lapointe, G. ; Narasaka, K. Org. Lett. 2008, 10, 313.
      (b) Wang, Y. -F. ; Toh, K. K. ; Chiba, S. ; Narasaka, K. Org. Lett. 2008, 10, 5019.
      (c) Wang, Y. -F. ; Chiba, S. J. Am. Chem. Soc. 2009, 131, 12570.
      (d) Wang, Y. -F. ; Toh, K. K. ; Ng, E. P. J. ; Chiba, S. J. Am. Chem. Soc. 2011, 133, 6411.
      (e) Wang, Y. -F. ; Toh, K. K. ; Lee, J. -Y. ; Chiba, S. Angew. Chem. , Int. Ed. 2011, 50, 5927.
      (f) Chen, F. ; Shen, T. ; Cui, Y. ; Jiao, N. Org. Lett. 2012, 14, 4926.
      (g) Wang, Y. -F. ; Lonca, G. H. ; Runigo, M. L. ; Chiba, S. Org. Lett. 2014, 16, 4272.

    8. [8]

      For some recent reviews, see: (a) Murphee, S. S. ; Padwa, A. In Progress Heterocyclic Chemistry, Vol. 9, Eds. : Scriven, E. F. V. ; Suschitzky, H., Pergamon Press, Oxford, 1997.
      (b) Pearson, W. H. ; Lian B. W. ; Bergmeier, S. C. In Comprehensive Heterocyclic Chemistry Ⅱ, Vol. 1A, Eds. : Katritzky, A. R. ; Rees, C. W. ; Scriven, E. F. V., Pergamon Press, Oxford, 1996, Chapter 1.
      (c) Heimgartner, H. Angew. Chem. , Int. Ed. 1991, 30, 238.

    9. [9]

      (a) Ray, C. A. ; Risberg, E. ; Somfai, P. Tetrahedron. 2002, 58, 5983.
      (b) Palacios, F. ; de Retana, A. M. O. ; de Marigorta, E. M. ; de los Santos, J. M. Org. Prep. Proced. Int. 2002, 34, 219.
      (c) Timén, A. S. ; Fischer, A. ; Somfai, P. Chem. Commun. 2003, 34, 1150.

    10. [10]

      For recent reviews on 2H-azirines, see: (a) Palacios, F. ; Retana, A. M. D. ; Marigorta, E. M. D. ; Santos, J. D. L. Eur. J. Org. Chem. 2001, 2401.
      (b) Palacios, F. ; Retana, A. M. O. D. ; Marigorta, E. M. D. ; Santos J. M. D. L. Org. Prep. Proced. Int. 2002, 34, 219.
      (c) Khlebnikov, A. F. ; Novikov, M. S. Tetrahedron 2013, 69, 3363.

    11. [11]

      (a) Hortmann, A. G. ; Robertson, D. A. ; Gillard, B. K. J. Org. Chem. 1972, 37, 322.
      (b) Hassner, A. ; Fowler, F. W. J. Am. Chem. Soc. 1968, 90, 2869.
      (c) Pinho e Melo, T. M. V. D. ; Lopes, C. S. J. ; Cardoso, A. L. ; Rocha Gonsalves, A. M. d'A. Tetrahedron 2001, 57, 6203.

    12. [12]

      Åsa Sjöholm Timén, Risberg E, Somfai P. ChemInform 2003, 44, 5339.

    13. [13]

      Singh, P. N. D.; Carter, C. L.; Gudmundsdóttir, A. D. Tetrahedron Lett. 2003, 44, 6763.  doi: 10.1016/S0040-4039(03)01558-2

    14. [14]

      (a) Muchowski, J. M. Adv. Med. Chem. 1992, 1, 109.
      (b) Cozzi, P. ; Mongelli, N. Curr. Pharm. Des. 1998, 4, 181.
      (c) Fürstner, A. Angew. Chem. , Int. Ed. 2003, 42, 3582.
      (d) Balme, G. Angew. Chem. , Int. Ed. 2004, 43, 6238.
      (e) Andreani, A. ; Cavalli, A. ; Granaiola, M. ; Guardigli, M. ; Leoni, A. ; Locatelli, A. ; Morigi, R. ; Rambaldi, M. ; Recanatini, M. ; Roda, A. J. Med. Chem. 2001, 44, 4011.
      (f) Baraldi, P. G. ; Nunez, M. C. ; Tabrizi, M. A. ; De Clercq, E. ; Balzarini, J. ; Bermejo, J. ; Esterez, F. ; Romagnodi, R. J. Med. Chem. 2004, 47, 2877.
      (g) Srivastava, S. K. ; Shefali Miller, C. N. ; Aceto, M. D. ; Traynor, J. R. ; Lewis, J. W. ; Husbands, S. M. ; J. Med. Chem. 2004, 47, 6645.

    15. [15]

      Walsh, C. T.; Garneau-Tsodikova, S.; Howard-Jones, A. R. Nat. Prod. Rep. 2006, 23, 517.  doi: 10.1039/b605245m

    16. [16]

      (a) Novák, P. ; Müller, K. ; Santhanam, K. S. V. ; Haas, O. Chem. Rev. 1997, 97, 207.
      (b) Gale, P. A. ; Acc. Chem. Res. 2006, 39, 465.

    17. [17]

      For selected examples in recent years, see: (a) Wan, X. ; Xing, D. ; Fang, Z. ; Li, B. ; Zhao, F. ; Zhang, K. ; Yang, L. ; Shi, Z. J. Am. Chem. Soc. 2006, 128, 12046.
      (b) Seregin, I. V. ; Gevorgyan, V. J. Am. Chem. Soc. 2006, 128, 12050.
      (c) Martín, R. ; Rivero, M. R. ; Buchwald, S. L. Angew. Chem. , Int. Ed. 2006, 45, 7079.
      (d) Binder, J. T. ; Kirsch, S. F. Org. Lett. 2006, 8, 2151.
      (e) Su, S. ; Porco, J. A., Jr. J. Am. Chem. Soc. 2007, 129, 7744.
      (f) Shindo, M. ; Yoshimura, Y. ; Hayashi, M. ; Soejima, H. ; Yoshikawa, T. ; Matsumoto, K. ; Shishido, K. Org. Lett. 2007, 9, 1963.
      (g) St. Cyr, D. J. ; Arndtsen, B. A. J. Am. Chem. Soc. 2007, 129, 12366.
      (h) Lu, Y. ; Arndtsen, B. A. Angew. Chem. , Int. Ed. 2008, 47, 5430.

    18. [18]

      Wang Y. F.; Toh K. K.; Chiba S.; Narasaka, K. Org. Lett. 2008, 10, 5019.  doi: 10.1021/ol802120u

    19. [19]

      Richert, S. A.; Tsang, P. K. S.; Sawyer, D. T. Inorg. Chem. 1988, 27, 1814.  doi: 10.1021/ic00283a027

    20. [20]

      Chen, F.; Shen, T.; Cui, Y.; Jiao, N. Org. Lett. 2012, 14, 4926.  doi: 10.1021/ol302270z

    21. [21]

      Pawar, S. K.; Sahani, R. L.; Liu, R. S. Chem.-Eur. J. 2015, 21, 10843.  doi: 10.1002/chem.v21.30

    22. [22]

      Zhu, X.; Chiba, S. Chem. Commun. 2016, 52, 2473.  doi: 10.1039/C5CC10299E

    23. [23]

      Wu, X. J.; Kassie, F.; Mersch-Sundermann, V. Mutat. Res. 2005, 589, 81.  doi: 10.1016/j.mrrev.2004.11.001

    24. [24]

      Chen, B.; Guo, S.; Guo, X.; Zhang, G.; Yu, Y. Org. Lett. 2015, 17, 4698.  doi: 10.1021/acs.orglett.5b02152

    25. [25]

      (a) Zablotskaya, A. ; Segal, I. ; Germane, S. ; Shestakova, I. ; Domracheva, I. ; Nesterova, A. ; Geronikaki, A. ; Lukevies, E. Chem. Heterocycl. Compd. 2002, 38, 859.
      (b) Franklin, P. X. ; Pillai, A. D. ; Rathod, P. D. ; Yerande, S. G. ; Nivsarkar, M. ; Padh, H. ; Sudarsanam, V. ; Vasu, K. K. Eur. J. Med. Chem. 2008, 43, 129.
      (c) Liu, R. ; Huang, Z. ; Murray, M. G. ; Guo, X. ; Liu, G. J. Med. Chem. 2011, 54, 5747.
      (d) Annadurai, S. ; Martinez, R. ; Canney, D. J. ; Eidem, T. ; Dunman, P. M. ; Abou-Gharbia, M. Bioorg. Med. Chem. Lett. 2012, 22, 7719.
      (e) Smith, B. ; Chang, H. -H. ; Medda, F. ; Gokhale, V. ; Dietrich, J. ; Davis, A. ; Meuillet, E. ; Hulme, C. Bioorg. Med. Chem. Lett. 2012, 22, 3567.

    26. [26]

      (a) Zhong, J. Nat. Prod. Rep. 2009, 26, 382.
      (b) Forte, B. ; Malgesini, B. ; Piutti, C. ; Quartieri, F. ; Scolaro, A. ; Papeo, G. Mar. Drugs 2009, 7, 705.
      (c) Midoux, P. ; Pichon, C. ; Yaouanc, J. -J. ; Jaffres, P. -A. J. Pharmacol. 2009, 157, 166.
      (d) Xiong, F. ; Chen, X. -X. ; Chen, F. -E. ; Tetrahedron: Asymmetry 2010, 21, 665.

    27. [27]

      (a) Lee, R. J. C. ; Timmermans, P. C. ; Gallaghr, T. F. ; Kumar, S. ; McNully, D. ; Blumenthal, M. ; Heys, J. R. Nature 1994, 372, 739.
      (b) Antolini, M. ; Bozzoli, A. ; Ghiron, C. ; Kennedy, G. ; Rossi, T. ; Ursini, A. Bioorg. Med. Chem. Lett. 1999, 9, 1023.
      (c) Wang, L. ; Woods, K. W. ; Li, Q. ; Barr, K. J. ; McCroskey, R. W. ; Hannick, S. M. ; Gherke, L. ; Credo, R. B. ; Hui, Y. -H. ; Marsh, K. ; Warner, R. ; Lee, J. Y. ; Zielinsky-Mozng, N. ; Frost, D. ; Rosenberg, S. H. ; Sham, H. L. J. Med. Chem. 2002, 45, 1697.
      (d) Dietrich, J. ; Gokhale, V. ; Wang, X. -D. ; Hurley, L. H. ; Flynn, G. A. Bioorg. Med. Chem. 2010, 18, 292.
      (e) Cho, H. -J. ; Gee, H. -G. ; Baek, K. -H. ; Ko, S. -K. ; Park, J. -K. ; Lee, H. ; Kim, N. -D. ; Lee, M. -G. ; Shin, I. J. Am. Chem. Soc. 2011, 133, 20267.

    28. [28]

      (a) Du, H. ; He, Y. ; Rasapalli, S. ; Lovely, C. -J. Synlett 2006, 965.
      (b) Bellina, F. ; Cauteruccio, S. ; Rossi, R. Tetrahedron 2007, 63, 4571.
      (c) Kaniyo, S. ; Yamamoto, Y. Chem. -Asian J. 2007, 2, 568.
      (d) Bellina, F. ; Rossi, R. Adv. Synth. Catal. , 2010, 352, 1223.

    29. [29]

      Xiang, L.; Niu, Y.; Pang, X.; Yang, X. D.; Yan, R. L. Chem. Commun. 2015, 6598.

    30. [30]

      (a) Chen, F. ; Shen, T. ; Cui, Y. ; Jiao, N. Org. Lett. 2012, 14, 4926.
      (b) Donthiri, R. R. ; Pappula, V. ; Reddy, N. N. K. ; Bairagi, D. ; Adimurthy, S. J. Org. Chem. 2014, 79, 11277.
      (c) Li, T. ; Xin, X. ; Wang, C. ; Wang, D. ; Wu, F. ; Li, X. ; Wan, B. Org. Lett. 2014, 16, 4806.

    31. [31]

      (a) Lan, R. ; Liu, Q. ; Fan, P. ; Lin, S. ; Fernando, S. R. ; McCallion, D. ; Pertwee, R. ; Makriyannis, A. J. Med. Chem. ; 1999; 42, 769.
      (b) Ballesteros, P. ; Claramunt, R. M. ; Escolastico, C. ; Maria, M. D. S. ; Elguero, J. J. Org. Chem. 2002, 57, 1873.
      (c) Barreiro, E. J. ; Camara, C. A. ; Verli, H. ; Brazil-Más, L. ; Castro, N. G. ; Cintra, W. M. ; Aracava, Y. ; Rodrigues, C. R. ; Fraga, C. A. M. J. Med. Chem. 2003, 46, 1144.
      (d) Christodoulou, M. S. ; Liekens, S. ; Kasiotis, K. M. ; Haroutounian, S. A. Bioorg. Med. Chem. 2010, 18, 4338.
      (e) Rashad, A. E. ; Hegab, M. I. ; Abdel-Megeid, R. E. ; Micky, J. A. ; Abdel-Megeid, F. M. E. Bioorg. Med. Chem. 2008, 16, 7102.
      (f) Fustero, S. ; Sánchez-Roselló, M. ; Barrio, P. ; Simón-Fuentes, A. Chem. Rev. 2011, 111, 6984.

    32. [32]

      Hu, J.; Cheng, Y.; Yang, Y.; Rao, Y. Chem. Commun. 2011, 47, 10133.  doi: 10.1039/c1cc13908h

    33. [33]

      (a) Michael, J. P. Nat. Prod. Rep. 1997, 14, 605.
      (b) Xu, M. ; Wagerle, T. ; Long, J. K. ; Lahm, G. P. ; Barry, J. D. ; Smith, R. M. Bioorg. Med. Chem. Lett. 2014, 24, 4026.

    34. [34]

      (a) Franciò, G. ; Faraone, F. ; Leitner, W. Angew. Chem., Int. Ed. 2000, 39, 1428.
      (b) Rueping, M. ; Antonchick, A. P. ; Theissmann, T. Angew. Chem. , Int. Ed. 2006, 45, 3683.

    35. [35]

      (a) Bakhshi, A. ; Bhalla, G. J. Sci. Ind. Res. 2004, 63, 715.
      (b) Kim, J. I. ; Shin, I. -S. ; Kim, H. ; Lee, J. -K. J. Am. Chem. Soc. 2005, 127, 1614.

    36. [36]

      Zhu, X.; Wang, Y. F.; Zhang, F. L.; Chiba, S. Chem. Asian J. 2014, 9, 2458.  doi: 10.1002/asia.201402421

    37. [37]

      (a) Kletsas, D. ; Li, W. ; Han, Z. ; Papadopoulos, V. Biochem. Pharmacol. 2004, 67, 1927.
      (b) Muscarella, D. E. ; O'Brian, K. A. ; Lemley, A. T. ; Bloom, S. E. Toxicol. Sci. 2003, 74, 66.

    38. [38]

      (a) Sweetman, B. A. ; Müller-Bunz, H. ; Guiry, P. J. Tetrahedron Lett. 2005, 46, 4643.
      (b) Durola, F. ; Sauvage, J. P. ; Wenger, O. S. Chem. Commun. 2006, 171.
      (c) Lim, C. W. ; Tissot, O. ; Mattison, A. ; Hooper, M. W. ; Brown, J. M. ; Cowley, A. R. ; Hulmes, D. I. ; Blacker, A. J. Org. Process Res. Dev. 2003, 7, 379.

    39. [39]

      (a) Fang, K. H. ; Wu, L. L. ; Huang, Y. T. ; Yang, C. H. ; Sun, I. W. Inorg. Chim. Acta 2006, 359, 441.
      (b) Zhao, Q. ; Liu, Q. S. ; Shi, M. ; Wang, C. ; Yu, M. ; Li, L. ; Li, F. ; Yi, T. ; Huang, C. Inorg. Chem. 2006, 45, 6152.
      (c) Tsuboyama, A. ; Iwawaki, H. ; Furugori, M. ; Mukaide, T. ; Kamatani, J. ; Igawa, S. ; Moriyama, S. T. ; Miura, S. ; Takiguchi, T. ; Okada, S. ; Hoshino, M. ; Ueno, K. J. Am. Chem. Soc. 2003, 125, 12971.

    40. [40]

      Wang, Y.-F.; Toh, K. K.; Lee, J.-Y.; Chiba, S. Angew. Chem., Int. Ed. 2011, 50, 5927.  doi: 10.1002/anie.v50.26

    41. [41]

      Liu, K.; Chen, S.; Li, X. G.; Liu, P. N. J. Org. Chem. 2015, 81, 265.
       

    42. [42]

      Zhu, Z. Z.; Tang, X. D.; Li, X. W.; Wu, W. Q.; Deng, G. H.; Jiang, H. F. J. Org. Chem. 2016, 81, 1401.  doi: 10.1021/acs.joc.5b02376

    43. [43]

      (a) Kock, I. ; Heber, D. ; Weide, M. ; Wolschendorf, U. ; Clement, B. J. Med. Chem. 2005, 48, 2772.
      (b) Bernardo, P. H. ; Wan, K. -F. ; Sivaraman, T. ; Xu, J. ; Moore, F. K. ; Hung, A. W. ; Mok, H. Y. K. ; Yu, V. C. ; Chai, C. L. L. J. Med. Chem. 2008, 51, 6699.
      (c) Cappoen, D. ; Jacobs, J. ; Van, T. N. ; Claessens, S. ; Diels, G. ; Anthonissen, R. ; Einarsdottir, T. ; Fauville, M. ; Verschaeve, L. ; Huygen, K. ; Kimpe, N. D. Eur. J. Med. Chem. 2012, 48, 57.
      (d) Cappoen, D. ; Claes, P. ; Jacobs, J. ; Anthonissen, R. ; Mathys, V. ; Verschaeve, L. ; Huygen, K. ; Kimpe, N. D. J. Med. Chem. 2014, 57, 2895.
      (e) Naidua, K. M. ; Nagesha, H. N. ; Singhb, M. ; Sriramc, D. ; Yogeeswaric, P. ; Sekhara, K. V. G. C. Eur. J. Med. Chem. 2015, 92, 415.

    44. [44]

      For selected examples, see: (a) Mehta, B. K. ; Yanagisawa, K. ; Shiro, M. ; Kotsuki, H. Org. Lett. 2003, 5, 1605.
      (b) Gerfaud, T. ; Neuville, L. ; Zhu, J. Angew. Chem. , Int. Ed. 2009, 48, 572.
      (c) Candito, D. A. ; Lautens, M. Angew. Chem. , Int. Ed. 2009, 48, 6713.
      (d) Zhang, L. ; Ang, G. Y. ; Chiba, S. Org. Lett. 2010, 12, 3682.
      (e) Deb, I. ; Yoshikai, N. Org. Lett. 2013, 15, 4254.
      (f) Tummatorn, J. ; Krajangsri, S. ; Norseeda, K. ; Thongsornkleeb, C. ; Ruchirawat, S. Org. Biomol. Chem. 2014, 12, 5077.
      (g) Li, J. ; Wang, H. ; Sun, J. ; Yang, Y. ; Liu, L. Org. Biomol. Chem. 2014, 12, 7904.
      (h) Jiang, H. ; An, X. ; Tong, K. ; Zheng, T. ; Zhang, Y. ; Yu, S. Angew. Chem. , Int. Ed. 2015, 54, 4055.

    45. [45]

      Yang, J. C.; Zhang, J. J.; Guo, L. N. Org. Biomol. Chem. 2016, 14, 9806.  doi: 10.1039/C6OB02012G

    46. [46]

      Wang, Y. F.; Lonca, G. H.; Le, R. M.; Chiba, S. Org. Lett. 2014, 16, 4272.  doi: 10.1021/ol501997n

    47. [47]

      Mackay, E.; Studer, A. Chem.-Eur. J. 2016, 22, 13455.  doi: 10.1002/chem.201602855

    48. [48]

      Sun, X.; Yu, S. Chem. Commun. 2016, 52, 10898.  doi: 10.1039/C6CC05756J

    49. [49]

      Quesne, P. W. L. J. Nat. Prod. 1997, 60, 202.
       

    50. [50]

      Wang, Y. F.; Chiba, S. J. Am. Chem. Soc. 2009, 131, 12570.  doi: 10.1021/ja905110c

    51. [51]

      Donthiri, R. R.; Pappula, V.; Reddy, N. N. K.; Bairagi, D.; Adimurthy, S. J. Org. Chem. 2014, 79, 11277.  doi: 10.1021/jo5021618

    52. [52]

      (a) Enguehard-Gueiffier, C. ; Gueiffier, A. Med. Chem. 2007, 7, 888.
      (b) Lhassani, M. ; Chavignon, O. ; Chezal, J. -M. ; Teulade, J. -C. ; Chapat, J. -P. ; Snoeck, R. ; Andrei, G. ; Balzarini, J. ; De Clercq, E. ; Gueiffier, A. Eur. J. Med. Chem. 1999, 34, 271.
      (c) Rupert, K. C. ; Henry, J. R. ; Dodd, J. H. ; Wadsworth, S. A. ; Cavender, D. E. ; Olini, G. C. ; Fahmy, B. ; Siekierka, J. Bioorg. Med. Chem. Lett. 2003, 13, 347.

    53. [53]

      For a review on synthesis of 2-azabicyclo[3. 3. 1] nonanes, see: Bonjoch, J. ; Diaba, F. ; Bradshaw, B. ; Farmàcia, F. Synthesis 2011, 993.

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    3. [3]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    4. [4]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    5. [5]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    6. [6]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    7. [7]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    8. [8]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    9. [9]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    10. [10]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    11. [11]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

    12. [12]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    13. [13]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    14. [14]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    15. [15]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    16. [16]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    17. [17]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    18. [18]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    19. [19]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(44)
  • Abstract views(3224)
  • HTML views(717)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return