Citation: Wang Sheng, Xu Xiaoliang, Li Xiaonian. Progress on the Transformations of Amino Acids by Heterogeneous Catalysis[J]. Chinese Journal of Organic Chemistry, ;2018, 38(3): 565-574. doi: 10.6023/cjoc201709003 shu

Progress on the Transformations of Amino Acids by Heterogeneous Catalysis

  • Corresponding author: Xu Xiaoliang, xuxiaoliang@zjut.edu.cn; xnli@zjut.edu.cn Li Xiaonian, 
  • Received Date: 4 September 2017
    Revised Date: 12 October 2017
    Available Online: 3 March 2017

    Fund Project: Project supported by the Natural Science Foundation of Zhejiang Province (No. LY18B020018)the Natural Science Foundation of Zhejiang Province LY18B020018

Figures(14)

  • The catalytic transformation of amino acids is one of the important routes in utilization of amino acids in chemical and biological fields. In this review, catalytic hydrogenation from amino acids to chiral amino alcohols, catalytic decarboxylation to produce amine and nitrile, catalytic deamination to produce carboxylic acid and its derivatives, catalytic pyrolysis to produce bio-fuel and the application as heterogeneous chiral catalyst were summarized. In the catalytic hydrogenation of amino acids, Ru and Rh-based catalysts showed better catalytic performance, and the temperature was a main factor on the optical purity of the product. The decarboxylation, deamination and pyrolysis reaction required relatively high temperature, which needed a large amount of energy consumption. The search of high activity and selectivity heterogeneous catalyst to achieve the reduction of the reaction temperature and pressure is the focus of future research. As the heterogeneous chiral catalyst, the research should be focus on the efficiency, seperation and recycling of the catalyst.
  • 加载中
    1. [1]

    2. [2]

      Tuck, C. O.; Pérez, E.; Horváth, I. T.; Sheldon, R. A.; Poliakoff, M. Science 2012, 337, 695.  doi: 10.1126/science.1218930

    3. [3]

      Breuer, M.; Ditrich, K.; Habicher, T.; Hauer, B.; Kesseler, M.; Stürmer, R.; Zelinski, T. Angew. Chem., Int. Ed. 2004, 43, 788.  doi: 10.1002/(ISSN)1521-3773

    4. [4]

      Demain, A. L. Ind. Biotech. 2007, 3, 269.  doi: 10.1089/ind.2007.3.269

    5. [5]

      Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987, 109, 5551.  doi: 10.1021/ja00252a056

    6. [6]

      Rogers, G. A.; Parsons, S. M.; Anderson, D. C.; Nilsson, L. M.; Bahr, B. A.; Kornreich, W. D.; Kaufman, R.; Jacobs, R. S.; Kirtman, B. J. Med. Chem. 1989, 32, 1217.  doi: 10.1021/jm00126a013

    7. [7]

      Corey, E. J.; Zhang, F. Y. Angew. Chem., Int. Ed. 1999, 38, 1931.  doi: 10.1002/(ISSN)1521-3773

    8. [8]

      (a) Abdelrahman, O. A.; Heyden, A.; Bond, J. Q. ACS Catal. 2014, 4, 1171.
      (b) Tan, J.; Cui, J.; Cui, X.; Deng, T.; Li, X.; Zhu, Y.; Li, Y. ACS Catal. 2015, 5, 7379.
      (c) Zhou, M.; Zhang, H.; Ma, H.; Ying, W. Ind. Eng. Chem. Res. 2017, 56, 8833.

    9. [9]

      (a) Wang, F.; Zhang, Z. ACS Sustainable Chem. Eng. 2016, 5, 942.
      (b) Adkins, H.; Pavlic, A. A. J. Am. Chem. Soc. 1947, 69, 3039.
      (c) Zhu, Y.; Zhu, Y.; Ding, G.; Zhu, S.; Zheng, H.; Li, Y. Appl. Catal., A 2013, 468, 296.
      (d) Zheng, X.; Lin, H.; Zheng, J.; Duan, X.; Yuan, Y. ACS Catal. 2013, 3, 2738.

    10. [10]

      Di, X.; Li, C.; Zhang, B.; Qi, J.; Li, W.; Su, D.; Liang, C. Ind. Eng. Chem. Res. 2017, 56, 4672.  doi: 10.1021/acs.iecr.6b04875

    11. [11]

      Primo, A.; Concepción, P.; Corma, A. Chem. Commun. 2011, 47, 3613.  doi: 10.1039/c0cc05206j

    12. [12]

      Fan, G.; Zhou, Y.; Fu, H.; Ye, X.; Li, R.; Chen, H.; Li, X. Chin. J. Chem. 2011, 29, 229.  doi: 10.1002/cjoc.201190071

    13. [13]

      Adkins, H., Billica, H. R. J. Am. Chem. Soc. 1948, 70, 3121.  doi: 10.1021/ja01189a085

    14. [14]

      (a) Antons, S.; Beitzke, B. DE 4428106, 1996 [Chem. Abstr. 1996, 124, 288759].
      (b) Antons, S. DE 4444109, 1996 [Chem. Abstr. 1996, 125, 114175].

    15. [15]

      Antons, S.; Tilling, A. S.; Wolters, E. WO 9938838, 1999[Chem. Abstr. 1999, 131, 130283].

    16. [16]

      Mägerlein, W.; Dreisbach, C.; Hugl, H.; Tse, M. K.; Klawonn, M.; Bhor, S.; Beller, M. Catal. Today 2007, 121, 140.  doi: 10.1016/j.cattod.2006.11.024

    17. [17]

      Metkar, P. S.; Scialdone, M. A.; Moloy, K. G. Green Chem. 2014, 16, 4575.  doi: 10.1039/C4GC01167H

    18. [18]

      Gong, D.-C.; Tu, Z.-Y.; He, H.-H.; Wei, P.; Ou Yang, P.-K. Mod. Chem. Ind. 2007, 27, 151(in Chinese).  doi: 10.3321/j.issn:0253-4320.2007.z1.035

    19. [19]

      Tamura, M.; Tamura, R.; Takeda, Y.; Nakagawa, Y.; Tomishige, K. Chem. Commun. 2014, 50, 6656.  doi: 10.1039/c4cc02675f

    20. [20]

      Jere, F. T. Ph.D. Dissertation, Michigan State University, East Lansing, 2003.
       

    21. [21]

      Tamura, M.; Tamura, R.; Takeda, Y.; Nakagawa, Y.; Tomishige, K. Chem.-Eur. J. 2015, 21, 3097.  doi: 10.1002/chem.201405769

    22. [22]

      Holladay, J. E.; Werpy, T. A.; Muzatko, D. S. In Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4~7, Breckenridge, Humana Press, Clifton, 2003, pp. 857~869.
       

    23. [23]

      Jere, F. T.; Miller, D. J.; Jackson, J. E. Org. Lett. 2003, 5, 527.  doi: 10.1021/ol0274211

    24. [24]

      Wang, Y. M.S. Thesis, Tianjin University, Tianjin, 2007(in Chinese).

    25. [25]

      He, H.-H. M.S. Thesis, Nanjing Tech University, Nanjing, 2005(in Chinese).

    26. [26]

      Zwietering, T. N. Chem. Eng. Sci. 1958, 8, 244.  doi: 10.1016/0009-2509(58)85031-9

    27. [27]

      Jere, F. T.; Jackson, J. E.; Miller, D. J. Ind. Eng. Chem. Res. 2004, 43, 3297.  doi: 10.1021/ie034046n

    28. [28]

      Bhandare, S. G.; Vaidya, P. D. Ind. Eng. Chem. Res. 2017, 56, 3797.  doi: 10.1021/acs.iecr.6b04406

    29. [29]

      Pimparkar, K. P.; Miller, D. J.; Jackson, J. E. Ind. Eng. Chem. Res. 2008, 47, 7648.  doi: 10.1021/ie800351x

    30. [30]

      Roose, P.; Eller, K.; Henkes, E.; Rossbacher, R.; Höke, H. Amines, Aliphatic in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag, Weinheim, Germany, 2015, pp. 1~55.
       

    31. [31]

      Froidevaux, V.; Negrell, C.; Caillol, S.; Pascault, J. P.; Boutevin, B. Chem. Rev. 2016, 116, 14181.  doi: 10.1021/acs.chemrev.6b00486

    32. [32]

      De Schouwer, F.; Claes, L.; Claes, N.; Bals, S.; Degrève, J.; De Vos, D. E. Green Chem. 2015, 17, 2263.  doi: 10.1039/C4GC02194K

    33. [33]

      Verduyckt, J.; Van Hoof, M.; De Schouwer, F.; Wolberg, M.; Kurttepeli, M.; Eloy, P.; Gaigneaux, E. M.; Bals, S.; Kirschhock, C. E. A.; De Vos, D. E. ACS Catal. 2016, 6, 7303.  doi: 10.1021/acscatal.6b02561

    34. [34]

      Verduyckt, J.; Coeck, R.; De Vos, D. E. ACS Sustainable Chem. Eng. 2017, 5, 3290.  doi: 10.1021/acssuschemeng.6b03140

    35. [35]

      Claes, L.; Verduyckt, J.; Stassen, I.; Lagrain, B.; De Vos, D. E. Chem. Commun. 2015, 51, 6528.  doi: 10.1039/C5CC00181A

    36. [36]

      Claes, L.; Matthessen, R.; Rombouts, I.; Stassen, I.; De Baerdemaeker, T.; Depla, D.; Delcour, J. A.; Lagrain, B.; DeVos, D. E. ChemSusChem 2015, 8, 345.  doi: 10.1002/cssc.201402801

    37. [37]

      De Schouwer, F.; Cuypers, T.; Claes, L.; De Vos, D. E. Green Chem. 2017, 19, 1866.  doi: 10.1039/C6GC03222B

    38. [38]

      Liu, G.; Wright, M. M.; Zhao, Q.; Brown, R. C.; Wang, K.; Xue, Y. Energy Convers. Manage. 2016, 112, 220.  doi: 10.1016/j.enconman.2016.01.024

    39. [39]

      Yi, L.; Liu, H.; Lu, G.; Zhang, Q.; Wang, J.; Hu, H.; Yao, H. Energ. Fuel. 2017, 31, 9484.  doi: 10.1021/acs.energyfuels.7b01413

    40. [40]

      Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed. 1971, 10, 496.  doi: 10.1002/(ISSN)1521-3773

    41. [41]

      List, B.; Lerner, R. A.; Barbas, C. F. J. Am. Chem. Soc. 2000, 122, 2395.  doi: 10.1021/ja994280y

    42. [42]

      List, B. Tetrahedron 2002, 58, 5573.  doi: 10.1016/S0040-4020(02)00516-1

    43. [43]

      (a) Wang, J.-Z. M.S. Thesis, Beijing University of Chemical Technology, Beijing, 2011(in Chinese).
      王玖钊, 硕士论文, 北京化工大学, 北京, 2011.
      (b) Gruttadauria, M.; Giacalone, F.; Noto, R. Adv. Synth. Catal. 2009, 351, 33.
      (c) Doyagüez, E. G.; Calderon, F.; Sanchez, F.; FernandezMayoralas, A. J. Org. Chem. 2007, 72, 9353.

    44. [44]

      Gao, J.; Liu, J.; Jiang, D.; Xiao, B.; Yang, Q. J. Mol. Catal. A:Chem. 2009, 313, 79.  doi: 10.1016/j.molcata.2009.08.005

    45. [45]

      An, Z.; Zhang, W.; Shi, H.; He, J. J. Catal. 2006, 241, 319.  doi: 10.1016/j.jcat.2006.04.035

    46. [46]

      An, Z.; Guo, Y.; Zhao, L.; Li, Z.; He, J. ACS Catal. 2014, 4, 2566.  doi: 10.1021/cs500385s

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    3. [3]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    4. [4]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    5. [5]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    6. [6]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    7. [7]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    8. [8]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    9. [9]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    10. [10]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    12. [12]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    13. [13]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    14. [14]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    15. [15]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    16. [16]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    17. [17]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    18. [18]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    19. [19]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    20. [20]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

Metrics
  • PDF Downloads(35)
  • Abstract views(2791)
  • HTML views(812)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return