Citation: Zhao Ming, Ji Yuan. Progress on Synthetic Applications of 1, 1-Dibromo-1-alkenes[J]. Chinese Journal of Organic Chemistry, ;2018, 38(2): 401-415. doi: 10.6023/cjoc201708034 shu

Progress on Synthetic Applications of 1, 1-Dibromo-1-alkenes

  • Corresponding author: Zhao Ming, ming815zhao@163.com
  • Received Date: 6 August 2017
    Revised Date: 10 September 2017
    Available Online: 19 February 2017

    Fund Project: the Fundamental Research Funds for the Central Universities 2015QNA22the Natural Science Foundation of Jiangsu Province BK20160254Project supported by the Fundamental Research Funds for the Central Universities (No. 2015QNA22) and the Natural Science Foundation of Jiangsu Province (No. BK20160254)

Figures(25)

  • As one type of organic synthetic materials and intermediates, 1, 1-dibromo-1-alkenes have been widely researched in C-C, C-N, C-O, C-P, and C-S bond formations. The couple of C-Br bonds in the molecule makes it reactive to afford bromoalkenes, bromoalkynes, terminal alkynes, and to prepare poly-substituted alkenes, fused aromatic rings and internal alkynes through coupling reactions. Various organic reactions with 1, 1-dibromo-1-alkenes as the starting materials are mainly reviewed.
  • 加载中
    1. [1]

      (a) Corey, E. J. ; Fuchs, P. L. Tetrahedron Lett. 1972, 13, 3769.
      (b) Desai, N. B. ; Mckelvie, N. ; Ramirez, F. J. Am. Chem. Soc. 1962, 84, 1745.

    2. [2]

      Fang, Y. Q.; Lifchits, O.; Lautens, M. Synlett 2008, 413.

    3. [3]

      Bhorge, Y. R.; Chang, C. T.; Chang, S. H.; Yan, T. H. Eur. J. Org. Chem. 2012, 2012, 4805.  doi: 10.1002/ejoc.v2012.25

    4. [4]

      Korotchenko, V. N.; Shastin, A. V.; Nenajdenko, V. G.; Balenkova, E. S. Org. Biomol. Chem. 2003, 1, 1906.  doi: 10.1039/b303221c

    5. [5]

      Raw, S. A.; Reid, M.; Roman, E.; Taylor, R. J. K. Synlett 2004, 819.

    6. [6]

      Pawluc, P.; Hreczycho, G.; Walkowiak, J.; Marciniec, B. Synlett 2007, 2061.

    7. [7]

      Li, P.; Alper, H. J. Org. Chem. 1986, 51, 4354.  doi: 10.1021/jo00373a005

    8. [8]

      Ratovelomana, V.; Rollin, Y.; Gebehenne, C.; Gosmini, C.; Perichon, J. Tetrahedron Lett. 1994, 35, 4777.  doi: 10.1016/S0040-4039(00)76965-6

    9. [9]

      Okutani, M.; Mori, Y. J. Org. Chem. 2008, 74, 442.

    10. [10]

      Krishna Moodapelly, S.; Sharma, G. V. M.; Ramana Doddi, V. Adv. Synth. Catal. 2017, 359, 1535.  doi: 10.1002/adsc.v359.9

    11. [11]

      Zhao, M.; Kuang, C. X.; Yang, Q.; Cheng, X. Z. Tetrahedron Lett. 2011, 52, 992.  doi: 10.1016/j.tetlet.2010.12.071

    12. [12]

      Liu, S. H.; Chen, X. B.; Hu, Y. W.; Yuan, L. Q.; Chen, S. H.; Wu, P.; Wang, W.; Zhang, S. L.; Zhang, W. Adv. Synth. Catal. 2015, 357, 553.  doi: 10.1002/adsc.201400782

    13. [13]

      Morri, A. K.; Thummala, Y.; Doddi, V. R. Org. Lett. 2015, 17, 4640.  doi: 10.1021/acs.orglett.5b02398

    14. [14]

      Uenishi, J. I.; Kawahama, R.; Yonemitsu, O.; Tsuji, J. J. Org. Chem. 1998, 63, 8965.  doi: 10.1021/jo9812781

    15. [15]

      Fakhfakh, M. A.; Franck, X.; Hocquemiller, R.; Figadère, B. J. Organomet. Chem. 2001, 624, 131.  doi: 10.1016/S0022-328X(00)00934-7

    16. [16]

      Xu, H.; Gu, S.; Chen, W.; Li, D.; Dou, J. J. Org. Chem. 2011, 76, 2448.  doi: 10.1021/jo2000176

    17. [17]

      Zhao, M.; Ming, L.; Tang, J.; Zhao, X. Org. Lett. 2016, 18, 416.  doi: 10.1021/acs.orglett.5b03448

    18. [18]

      Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. J. Org. Chem. 1981, 46, 3745.  doi: 10.1021/jo00331a039

    19. [19]

      Ranu, B. C.; Samanta, S.; Guchhait, S. K. J. Org. Chem. 2001, 66, 4102.  doi: 10.1021/jo0102314

    20. [20]

      Kuang, C. X.; Senboku, H.; Tokuda, M. Tetrahedron 2002, 58, 1491.  doi: 10.1016/S0040-4020(02)00013-3

    21. [21]

      Wang, L.; Li, P. H.; Xie, Y. Y.; Ding, Y. B. Synlett 2003, 1137.

    22. [22]

      Horibe, H.; Kondo, K.; Okuno, H.; Aoyama, T. Synthesis-Stuttgart 2004, 986.

    23. [23]

      Li, Y. H.; Lu, L.; Zhao, X. M. Org. Lett. 2004, 6, 4467.  doi: 10.1021/ol0482341

    24. [24]

      Shen, W.; Wang, L. J. Org. Chem. 1999, 64, 8873.  doi: 10.1021/jo991116k

    25. [25]

      Stille, J. K. Angew. Chem., Int. Ed. 1986, 25, 508.  doi: 10.1002/(ISSN)1521-3773

    26. [26]

      Shen, W. Synlett 2000, 737.
       

    27. [27]

      Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.  doi: 10.1021/cr00039a007

    28. [28]

      Riveiros, R.; Saya, L.; Sestelo, J. P.; Sarandeses, L. A. Eur. J. Org. Chem. 2008, 1959.

    29. [29]

      Kabalka, G. W.; Dong, G.; Venkataiah, B. Tetrahedron Lett. 2005, 46, 763.  doi: 10.1016/j.tetlet.2004.12.021

    30. [30]

      Ramana, C.; Kishore Reddy, B.; Nageswara Reddy, C.; Gonnade, R.; Gurjar, M. Synlett 2007, 127.

    31. [31]

      Gu, S.; Xu, H.; Zhang, N.; Chen, W. Chem. Asian J. 2010, 5, 1677.  doi: 10.1002/asia.v5:7

    32. [32]

      Oh, C. H.; Lim, Y. M. Bull. Korea Chem. Soc. 2002, 23, 663.  doi: 10.5012/bkcs.2002.23.5.663

    33. [33]

      Zhu, Y.; Sun, P.; Yang, H. L.; Lu, L. H.; Yan, H.; Creus, M.; Mao, J. C. Eur. J. Org. Chem. 2012, 4831.
       

    34. [34]

      Voyer, N.; Cardinal, S. Synthesis 2016, 48, 1202.  doi: 10.1055/s-00000084

    35. [35]

      Ogasawara, M.; Ikeda, H.; Hayashi, T. Angew. Chem. 2000, 112, 1084.  doi: 10.1002/(ISSN)1521-3757

    36. [36]

      Zeng, X.; Qian, M.; Hu, Q.; Negishi, E. -I. Angew. Chem., Int. Ed. 2004, 43, 2259.  doi: 10.1002/(ISSN)1521-3773

    37. [37]

      Shi, J.; Zeng, X.; Negishi, E. -I. Org. Lett. 2003, 5, 1825.  doi: 10.1021/ol030017x

    38. [38]

      Uenishi, J.; Iwamoto, T.; Ohmi, M. Tetrahedron Lett. 2007, 48, 1237.  doi: 10.1016/j.tetlet.2006.12.044

    39. [39]

      Yan, J. C.; Wang, Z. Y.; Wang, L. J. Chem. Res., Synop. 2004, 71.

    40. [40]

      (a) Chelucci, G. ; Capitta, F. ; Baldino, S. Tetrahedron 2008, 64, 10250.
      (b) Chelucci, G. ; Capitta, F. ; Baldino, S. ; Pinna, G. A. Tetrahedron Lett. 2007, 48, 6514.

    41. [41]

      Rahimi, A.; Schmidt, A. Synthesis-Stuttgart 2010, 2621.

    42. [42]

      Liu, J. D.; Dai, F. L.; Yang, Z. Y.; Wang, S. Z.; Xie, K.; Wang, A. W.; Chen, X.; Tan, Z. Tetrahedron Lett. 2012, 53, 5678.  doi: 10.1016/j.tetlet.2012.08.044

    43. [43]

      Yan, H.; Lu, L.; Sun, P.; Zhu, Y.; Yang, H.; Liu, D.; Rong, G.; Mao, J. RSC Adv. 2013, 3, 377.  doi: 10.1039/C2RA21577B

    44. [44]

      Rao, M. L.; Jadhav, D. N.; Dasgupta, P. Org. Lett. 2010, 12, 2048.  doi: 10.1021/ol1004164

    45. [45]

      Rao, M. L. N.; Dasgupta, P.; Murty, V. N. RSC Adv. 2015, 5, 24834.  doi: 10.1039/C5RA01544H

    46. [46]

      Berciano, B. P.; Lebrequier, S.; Besselievre, F.; Piguel, S. Org. Lett. 2010, 12, 4038.  doi: 10.1021/ol1016433

    47. [47]

      Aziz, J.; Baladi, T.; Piguel, S. J. Org. Chem. 2016, 81, 4122.  doi: 10.1021/acs.joc.6b00406

    48. [48]

      Reddy, G. C.; Balasubramanyam, P.; Salvanna, N.; Das, B. Eur. J. Org. Chem. 2012, 471.
       

    49. [49]

      Shen, C.; Yang, Y. Z.; Liu, Z. X.; Zhang, Y. H. Synth. Commun. 2014, 44, 1970.  doi: 10.1080/00397911.2014.882004

    50. [50]

      Shen, W.; Thomas, S. A. Org. Lett. 2000, 2, 2857.  doi: 10.1021/ol006282p

    51. [51]

      Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 50, 4467.

    52. [52]

      Lee, H. B.; Huh, D. H.; Oh, J. S.; Min, G. H.; Kim, B. H.; Lee, D. H.; Hwang, J. K.; Kim, Y. G. Tetrahedron 2001, 57, 8283.  doi: 10.1016/S0040-4020(01)00829-8

    53. [53]

      Rao, M. L. N.; Dasgupta, P.; Ramakrishna, B. S.; Murty, V. N. Tetrahedron Lett. 2014, 55, 3529.  doi: 10.1016/j.tetlet.2014.04.092

    54. [54]

      Yan, J. C.; Wang, L. Synth. Commun. 2005, 35, 2333.  doi: 10.1080/00397910500187191

    55. [55]

      Coste, A.; Couty, F.; Evano, G. Synthesis-Stuttgart 2010, 1500.

    56. [56]

      Jin, H.; Kuang, C. X. Chin. J. Chem. 2011, 29, 592.  doi: 10.1002/cjoc.201190128

    57. [57]

      Huang, Z.; Shang, R.; Zhang, Z. R.; Tan, X. D.; Xiao, X.; Fu, Y. J. Org. Chem. 2013, 78, 4551.  doi: 10.1021/jo400616r

    58. [58]

      Ye, S.; Yang, X.; Wu, J. Chem. Commun. 2010, 46, 2950.  doi: 10.1039/b926763h

    59. [59]

      Bryan, C. S.; Lautens, M. Org. Lett. 2010, 12, 2754.  doi: 10.1021/ol100844v

    60. [60]

      Nicolaus, N.; Franke, P. T.; Lautens, M. Org. Lett. 2011, 13, 4236.  doi: 10.1021/ol201585a

    61. [61]

      (a) Coste, A. ; Karthikeyan, G. ; Couty, F. ; Evano, G. Angew. Chem., Int. Ed. 2009, 48, 4381.
      (b) Jouvin, K. ; Coste, A. ; Bayle, A. ; Legrand, F. ; Karthikeyan, G. ; Tadiparthi, K. ; Evano, G. Organometallics 2012, 31, 7933.

    62. [62]

      Coste, A.; Couty, F.; Evano, G. Org. Lett. 2009, 11, 4454.  doi: 10.1021/ol901831s

    63. [63]

      Das, B.; Salvanna, N.; Reddy, G. C.; Balasubramanyam, P. Tetra-hedron Lett. 2011, 52, 6497.  doi: 10.1016/j.tetlet.2011.09.117

    64. [64]

      Wang, M. G.; Wu, J.; Shang, Z. C. Synlett 2012, 23, 589.  doi: 10.1055/s-0031-1290340

    65. [65]

      Huh, D. H.; Ryu, H.; Kim, Y. G. Tetrahedron 2004, 60, 9857.  doi: 10.1016/j.tet.2004.08.035

    66. [66]

      Fayol, A.; Fang, Y. Q.; Lautens, M. Org. Lett. 2006, 8, 4203.  doi: 10.1021/ol061374l

    67. [67]

      Fang, Y. Q.; Lautens, M. J. Org. Chem. 2008, 73, 538.  doi: 10.1021/jo701987r

    68. [68]

      Vieira, T. O.; Meaney, L. A.; Shi, Y. L.; Alper, H. Org. Lett. 2008, 10, 4899.  doi: 10.1021/ol801985q

    69. [69]

      Jiang, B. S.; Tao, K. M.; Shen, W.; Zhang, J. C. Tetrahedron Lett. 2010, 51, 6342.  doi: 10.1016/j.tetlet.2010.09.129

    70. [70]

      Shen, W.; Kohn, T.; Fu, Z.; Jiao, X.; Lai, S. J.; Schmitt, M. Tetrahedron Lett. 2008, 49, 7284.  doi: 10.1016/j.tetlet.2008.10.030

    71. [71]

      Tao, K. M.; Zheng, J. L.; Liu, Z. G.; Shen, W.; Zhang, J. C. Tetrahedron Lett. 2010, 51, 3246.  doi: 10.1016/j.tetlet.2010.04.071

    72. [72]

      Zhang, A. M.; Zheng, X. L.; Fan, J. F.; Shen, W. Tetrahedron Lett. 2010, 51, 828.  doi: 10.1016/j.tetlet.2009.12.013

    73. [73]

      Sun, C.; Xu, B. J. Org. Chem. 2008, 73, 7361.  doi: 10.1021/jo801219j

    74. [74]

      Taylor, R.; Beltrán-Rodil, S.; Edwards, M.; Pugh, D.; Reid, M. Synlett 2009, 602.

    75. [75]

      Wang, Z. J.; Yang, J. G.; Yang, F.; Bao, W. Org. Lett. 2010, 12, 3034.  doi: 10.1021/ol101041e

    76. [76]

      Wang, Z. J.; Yang, F.; Lv, X.; Bao, W. J. Org. Chem. 2011, 76, 967.  doi: 10.1021/jo101899a

    77. [77]

      Xu, H. ; Zhang, Y. ; Huang, J. Q. ; Chen, W. Z. Org. Lett. 2010, 12, 3704.

    78. [78]

      Kiruthika, S. E.; Perumal, P. T. Org. Lett. 2014, 16, 484.  doi: 10.1021/ol403365t

    79. [79]

      Sayyad, M.; Wani, I. A.; Tiwari, D. P.; Ghorai, M. K. Eur. J. Org. Chem. 2017, 2017, 2369.

    80. [80]

      Shen, W.; Kunzer, A. Org. Lett. 2002, 4, 1315.  doi: 10.1021/ol025608m

    81. [81]

      Ye, W.; Mo, J.; Zhao, T.; Xu, B. Chem. Commun. (Camb.) 2009, 45, 3246.
       

    82. [82]

      Wang, L.; Li, P. H.; Yan, J. C.; Wu, Z. Z. Tetrahedron Lett. 2003, 44, 4685.  doi: 10.1016/S0040-4039(03)01084-0

    83. [83]

      Zhao, M.; Kuang, C. X.; Cheng, X. Z.; Yang, Q. Chin. Chem. Lett. 2011, 22, 571.  doi: 10.1016/j.cclet.2010.11.022

    84. [84]

      Jouvin, K.; Bayle, A.; Legrand, F.; Evano, G. Org. Lett. 2012, 14, 1652.  doi: 10.1021/ol300491d

    85. [85]

      Murahashi, S. I.; Yamamura, M.; Yanagisawa, K. I.; Mita, N.; Kondo, K. J. Org. Chem. 1979, 44, 2408.  doi: 10.1021/jo01328a016

    86. [86]

      Cristau, H. J.; Chabaud, B.; Labaudiniere, R.; Christol, H. J. Org. Chem. 1986, 51, 875.  doi: 10.1021/jo00356a024

    87. [87]

      Jin, H.; Yang, Y. W.; Kuang, C. X.; Yang, Q. Synlett 2011, 2886.

    88. [88]

      Ni, Z.; Wang, S.; Mao, H.; Pan, Y. Tetrahedron Lett. 2012, 53, 3907.  doi: 10.1016/j.tetlet.2012.05.072

    89. [89]

      Perin, G.; Roehrs, J. A.; Hellwig, P. S.; Stach, G.; Barcellos, T.; Lenard o, E. J.; Jacob, R. G.; Luz, E. Q. ChemistrySelect 2017, 2, 4561.  doi: 10.1002/slct.201700948

    90. [90]

      Newman, S. G.; Aureggi, V.; Bryan, C. S.; Lautens, M. Chem. Commun. 2009, 5236.

    91. [91]

      Chen, W.; Zhang, Y.; Zhang, L.; Wang, M.; Wang, L. Chem Commun. 2011, 47, 10476.  doi: 10.1039/c1cc13967c

    92. [92]

      (a) Liu, J. ; Chen, W. ; Ji, Y. ; Wang, L. Adv. Synth. Catal. 2012, 354, 1585.
      (b) Zhou, W. ; Chen, W. ; Wang, L. Org. Biomol. Chem. 2012, 10, 4172.

    93. [93]

      Qin, X.; Cong, X.; Zhao, D.; You, J.; Lan, J. Chem. Commun. 2011, 47, 5611.  doi: 10.1039/c1cc10572h

    94. [94]

      Fan, X. S.; He, Y.; Zhang, X. Y.; Guo, S. G.; Wang, Y. Y. Tetrahedron 2011, 67, 6369.  doi: 10.1016/j.tet.2011.05.111

    95. [95]

      Liu, J. M.; Zhang, N. F.; Yue, Y. Y.; Wang, D.; Zhang, Y. L.; Zhang, X.; Zhuo, K. L. RSC Adv. 2013, 3, 3865.  doi: 10.1039/c3ra00093a

    96. [96]

      Liu, J.; Zhang, X.; Shi, L.; Liu, M.; Yue, Y.; Li, F.; Zhuo, K. Chem. Commun. 2014, 50, 9887.  doi: 10.1039/C4CC04377D

    97. [97]

      Lera, M.; Hayes, C. J. Org. Lett. 2000, 2, 3873.  doi: 10.1021/ol0066173

    98. [98]

      Wang, Y.; Gan, J.; Liu, L.; Yuan, H.; Gao, Y.; Liu, Y.; Zhao, Y. J. Org. Chem. 2014, 79, 3678.  doi: 10.1021/jo500312n

    99. [99]

      Evano, G.; Tadiparthi, K.; Couty, F. Chem. Commun. 2011, 47, 179.  doi: 10.1039/C0CC01617A

    100. [100]

      Liu, L.; Wang, Y. L.; Zeng, Z. P.; Xu, P. X.; Gao, Y. X.; Yin, Y. W.; Zhao, Y. F. Adv. Synth. Catal. 2013, 355, 659.  doi: 10.1002/adsc.201200853

    101. [101]

      Hata, T.; Kitagawa, H.; Masai, H.; Kurahashi, T.; Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed. 2001, 40, 790.  doi: 10.1002/1521-3773(20010216)40:4<>1.0.CO;2-X

    102. [102]

      Webber, R.; Peglow, T. J.; Nobre, P. C.; Barcellos, A. M.; Roehrs, J. A.; Schumacher, R. F.; Perin, G. Tetrahedron Lett. 2016, 57, 4128.  doi: 10.1016/j.tetlet.2016.07.018

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    3. [3]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    4. [4]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    5. [5]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    6. [6]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    7. [7]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    8. [8]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    9. [9]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

    10. [10]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    11. [11]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    12. [12]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    13. [13]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    14. [14]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    15. [15]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    16. [16]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    17. [17]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    18. [18]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    19. [19]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    20. [20]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

Metrics
  • PDF Downloads(22)
  • Abstract views(3068)
  • HTML views(675)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return