新型含取代吡唑环结构的吡唑肟醚衍生物的合成及生物活性研究

戴红 姚炜 孙思宇 李玲 施磊 钱宏炜 李春建 石健 石玉军

引用本文: 戴红, 姚炜, 孙思宇, 李玲, 施磊, 钱宏炜, 李春建, 石健, 石玉军. 新型含取代吡唑环结构的吡唑肟醚衍生物的合成及生物活性研究[J]. 有机化学, 2017, 37(12): 3155-3162. doi: 10.6023/cjoc201708020 shu
Citation:  Dai Hong, Yao Wei, Sun Siyu, Li Ling, Shi Lei, Qian Hongwei, Li Chunjian, Shi Jian, Shi Yujun. Synthesis and Bioactivities of Novel Pyrazole Oxime Ethers Containing Substituted Pyrazolyl Group[J]. Chinese Journal of Organic Chemistry, 2017, 37(12): 3155-3162. doi: 10.6023/cjoc201708020 shu

新型含取代吡唑环结构的吡唑肟醚衍生物的合成及生物活性研究

    通讯作者: 施磊, gaohbhe2015@aliyun.com; 石玉军, yjshi2015@163.com
  • 基金项目:

    国家自然科学基金(No.21372135)、江苏省“六大人才高峰”(No.2013-SWYY-013)和江苏省研究生实践创新计划(No.SJCX17_0640)资助项目

摘要: 为了寻找具有较好生物活性的吡唑肟醚衍生物,采用活性亚拼接方法,设计并合成了一系列新型含取代吡唑环结构的吡唑肟醚类化合物.通过1H NMR、13C NMR和元素分析等手段对目标化合物的结构进行了表征.初步的生物活性测试结果表明,大多数化合物表现出较好的杀虫活性.在测试浓度为500 μg/mL时,16个化合物对粘虫的杀灭活性可达80%~100%,14个化合物对蚜虫的杀死率可达80%~100%,12个化合物对褐飞虱的杀死率可达70%~100%.当测试浓度降为100 μg/mL时,5个化合物对蚜虫的杀灭活性可达50%~80%.

English

  • 吡唑环是一类重要的含氮杂环, 吡唑类衍生物由于其具有优异的杀虫、杀菌、除草及抗肿瘤等活性而倍受药物化学家的关注[1~5].目前, 已有多种具有广谱生物活性的吡唑类衍生物被相继开发出来, 如日本三菱化学公司研制的杀螨剂吡螨胺(Tebufenpyrad, 图 1), 该化合物具有高效、低毒、持效期长等特点, 用于防治多种螨虫[6, 7], 美国杜邦公司研究开发的超高效杀虫剂氯虫苯甲酰胺(Chlorantraniliprole, 图 1)对鳞翅目类害虫如小菜蛾、粘虫等表现良好杀灭作用[8].吡唑肟醚化合物亦为一类重要的吡唑类衍生物, 吡唑肟醚类化合物在农业生产与医疗保健领域发挥着举足轻重的作用, 常常被应用于杀虫、杀菌、抗病毒及抗肿瘤等方面[9~11].如日本Nihon Nohyaku公司研制开发的杀螨剂唑螨酯(Fenpyro-ximate, 图 1), 该化合物具有击倒快、持效期长、受季节影响小等特点, 可用来防治多种植食性螨[12, 13].此后药物化学工作者在唑螨酯结构的基础上设计并合成出了许多具有良好生物活性的吡唑肟醚衍生物(图 1).如Dai等[14]报道的含噻唑环结构的吡唑肟醚类衍生物A表现出较好的杀虫与杀螨作用, 在测试浓度为200 μg/mL时, 化合物A对小菜蛾的防治效果为100%, 对螨虫的抑制率为95%; Fu等[15]合成的含吡啶环取代的吡唑肟醚化合物B显示出优异的杀螨活性, 在测试浓度为10 μg/mL时, 化合物B对螨虫的杀死率为95%; Wang等[16]报道的含噁唑环取代的吡唑肟醚衍生物C具有良好的杀虫与杀菌活性, 在测试浓度为100 μg/mL时, 化合物C对褐飞虱和蚜虫的杀死率分别为100%和90%, 在测试浓度为50 μg/mL时, 化合物C对黄瓜霜霉病菌的抑制率为80%; Ouyang等[11]合成的含取代吡啶环结构的吡唑肟醚衍生物D对烟草花叶病毒呈现出较好的抗病毒作用, 其EC50值为58.7 μg/mL; 此外, Park等[17]报道的化合物E对肺癌细胞A549表现出较好的抗肿瘤作用, 其IC50值为0.13 μg/mL.

    图1 吡螨胺、氯虫苯甲酰胺、唑螨酯和化合物A~E的化学结构式 Figure1. Chemical structures of tebufenpyrad, chlorantraniliprole, fenpyroximate, and compounds A~E

    鉴于此, 为了进一步从吡唑肟醚类化合物中寻找和发现高活性化合物, 本研究以唑螨酯为先导化合物, 利用活性亚结构拼接原理, 设计并制备了一系列未见文献报道的新型含取代吡唑环结构的吡唑肟醚类化合物(图 2).目标化合物的结构均经1H NMR, 13C NMR和元素分析确证.另外, 我们对所合成的化合物进行了初步的生物活性测试, 结果显示, 大多数目标化合物表现出较好的杀虫活性.目标化合物的合成路线如Scheme 1所示.

    图2 目标化合物7的分子设计示意图 Figure2. Design strategy of the target compounds 7
    图式 1 目标化合物7的合成路线 Scheme1. Synthetic route of the title compounds 7

    1   结果与讨论

    1.1   目标化合物的合成

    在目标化合物的合成中, 我们以化合物7d的合成为研究对象, 探讨了不同的反应条件对7d收率的影响.由表 1可以看出, 采用碳酸钾或碳酸铯作缚酸剂, 乙腈作溶剂, 加热回流反应12 h, 化合物7d的收率相对较高, 分别为68%和70%, 考虑到碳酸铯较碳酸钾价格昂贵, 最终我们采用碳酸钾作缚酸剂, 乙腈作溶剂, 加热回流反应的方法顺利地合成了目标化合物.

    表 1  不同反应条件对目标化合物7d合成收率的影响 Table 1.  Effects of reaction conditions on the synthesis of the target compound 7d
    Entry Base Solvent Reaction condition Yield/%
    1 Et3N CH3COCH3 Reflux for 12 h 0
    2 NaHCO3 CH3COCH3 Reflux for 12 h 0
    3 K2CO3 CH3COCH3 Reflux for 12 h 20
    4 K2CO3 CH3CN Reflux for 12 h 68
    5 Cs2CO3 CH3CN Reflux for 12 h 70
    6 K2CO3 DMF Reflux for 12 h 41

    1.2   化合物的图谱剖析

    我们以目标化合物7b的核磁共振氢谱与碳谱数据为例进行说明. δ 7.91处的双重峰为吡唑环上一个氢的吸收峰, δ 7.81处的单峰对应于CH=N氢的吸收峰, δ 7.72处的双重峰为吡唑环上一个氢的吸收峰, δ 7.63处的双重峰为苯环上两个氢的吸收峰, δ 7.38处的双重峰为苯环上两个氢的吸收峰, δ 7.09处的双重峰为苯环上两个氢的吸收峰, δ 6.77处的双重峰为苯环上两个氢的吸收峰, δ 6.46处的三重峰为吡唑环上一个氢的吸收峰, δ 5.03处的单峰对应于与苯环相连的CH2上两个氢的吸收峰, δ 3.59处的单峰为吡唑环1-位甲基上三个氢的吸收峰, δ 2.37处的单峰为吡唑环3-位甲基上三个氢的吸收峰, δ 2.30处的单峰为苯环4-位甲基上三个氢的吸收峰, δ在75.3处的峰为与苯环相连的CH2碳原子的信号峰, δ 34.2处的峰为吡唑环1-位甲基碳原子的信号峰, δ 20.6处的峰为苯环4-位甲基碳原子的信号峰, δ 14.8处的峰为吡唑环3-位甲基碳原子的信号峰.

    1.3   化合物的杀虫活性

    目标化合物7a~7q对粘虫(Oriental armyworm)、蚜虫(Aphis medicaginis)和褐飞虱(Nilaparvata lugens)的杀虫活性测试结果见表 2.初步的生物活性测试结果表明, 大多数目标化合物表现出较好的杀虫活性, 但无明显的规律.在测试浓度为500 μg/mL时, 目标化合物7a~7h, 7j~7p对粘虫的杀死率均达100%, 与对照药啶虫丙醚的防效相当; 化合物7a, 7b, 7d, 7e, 7f, 7g, 7h, 7i, 7j, 7k, 7l, 7m, 7n7o在测试剂量为500 μg/mL时, 对蚜虫的杀死率分别为100%, 100%, 95%, 100%, 100%, 100%, 100%, 100%, 80%, 100%, 100%, 100%, 80%和100%;当测试剂量降至100 μg/mL时, 部分化合物对蚜虫仍表现出较好的杀虫活性, 其中当R1=CH3时, 氢取代物7f、3-氟取代物7h、3-氯取代物7i、4-溴取代物7l和4-碘取代物7m对蚜虫的抑制效果相对较好, 其抑制率分别为70%, 80%, 80%, 50%和70%.另外, 化合物7a, 7b, 7d, 7e, 7f, 7g, 7h, 7i, 7l, 7m, 7o7q在测试浓度为500 μg/mL时对褐飞虱显示出较好的杀虫效果, 其抑制率分别为100%, 100%, 90%, 100%, 100%, 80%, 100%, 100%, 100%, 100%, 80%和70%, 其中化合物7a, 7b, 7d, 7e, 7f, 7h, 7i, 7l7m与对照药吡虫啉的防治效果接近, 其中当R1=CH3时, 4-三氟甲氧基取代物7e和3-氯取代物7i在测试剂量降为100 μg/mL时, 对褐飞虱仍具有一定的杀虫效果, 其抑制率均为30%.

    表 2  目标化合物7a~7q的杀虫活性(死亡率/%)a Table 2.  Insecticidal activities (mortality/%) of target compounds 7a~7q
    Compd. Oriental armyworm Aphis medicaginis Nilaparvata lugens
    500 μg/mL100 μg/mL500 μg/mL100 μg/mL500 μg/mL100 μg/mL
    7a100010001000
    7b100010001000
    7c100000
    7d1000950900
    7e1000100010030
    7f1000100701000
    7g10001000800
    7h1000100801000
    7i8001008010030
    7j10008000
    7k100010000
    7l10020100501000
    7m1000100701000
    7n10008000
    7o10001000800
    7p100000
    7q000700
    Pyridalyl100100
    Imidacloprid100100100100
    a— refers to not tested.

    当R2=4-CH3时, 化合物7b (R1=CH3)在测试剂量为500 μg/mL时对蚜虫和褐飞虱的防治效果均要优于化合物7p (R1=4-CH3C6H4)的药效.以上试验数据为今后继续从事吡唑肟醚类化合物的分子设计、合成与生物活性研究奠定了一定的理论基础.

    2   结论

    本研究通过活性亚结构拼接原理, 合成了17个新型含取代吡唑结构的吡唑肟醚类化合物.初步的生测结果显示, 大多数化合物具有较好的杀虫活性.在测试浓度为500 μg/mL时, 目标化合物7a~7h, 7j~7p对粘虫的杀死率均为100%, 化合物7a, 7b, 7d~7o在测试剂量为500 μg/mL时, 对蚜虫的杀死率在80%~100%, 化合物7a, 7b, 7d~7i, 7l, 7m, 7o7q在测试浓度为500 μg/mL时对褐飞虱也显示出较好的抑制效果, 其杀死率在70%~100%, 当测试剂量降为100 μg/mL时, 化合物7f, 7h, 7i, 7l7m对蚜虫还呈现出较好的防治效果, 其抑制率分别为70%, 80%, 80%, 50%和70%.进一步的结构修饰与生物活性研究正在进行中.

    3   实验部分

    3.1   仪器与试剂

    X-4型数字显示熔点测定仪(北京泰克仪器有限公司), 温度计未经校正; Yanaco-CHN CORDER MT-3自动元素分析仪; Bruker AM-400型核磁共振仪, 以CDCl3为溶剂, TMS为内标; 柱层析硅胶为H型(青岛海洋化工厂, 200~300目).所用试剂均为分析纯.中间体4-(1H-吡唑-1-基)苯甲醛(1)按照文献[18]方法制备. 1, 3-二甲基-5-氯吡唑-4-甲醛(4)按照文献[19]方法制备.中间体1, 3-二甲基-5-取代苯氧基吡唑-4-甲醛(5)和1, 3-二甲基-5-取代苯氧基吡唑-4-甲醛肟(6)按照文献[20, 21]方法制备.

    3.2   4-(1H-吡唑-1-基)苯甲醇(2)的合成

    在一100 mL圆底烧瓶中, 加入0.03 mol中间体1及25 mL无水四氢呋喃, 冰浴搅拌下, 向其中分批加入0.06 mol四氢铝锂, 加毕, 继续冰浴搅拌30 min, 停止反应.向其反应液中加入适量水, 抽滤, 母液用乙酸乙酯萃取数次, 合并有机层, 无水硫酸钠干燥, 抽滤, 减压蒸除溶剂, 得到相应的中间体2, 产品未经纯化可直接用于下一步反应.

    3.3   4-(1H-吡唑-1-基)苯甲基氯(3)的合成

    在一100 mL圆底烧瓶中, 加入0.01 mol中间体2及30 mL二氯甲烷, 冰浴搅拌下, 向其中滴加0.1 mol氯化亚砜, 滴毕, 向其中滴加3滴N, N-二甲基甲酰胺(DMF).继续室温搅拌30 min, 向其反应液中加入适量水, 分层, 有机层用饱和NaCl溶液洗涤、无水硫酸钠干燥, 抽滤、减压蒸除溶剂, 得到相应的中间体3.产品未经纯化直接用于后面的反应.

    3.4   目标化合物7的合成

    在一100 mL圆底烧瓶中, 加入3 mmol肟中间体6、6 mmol无水碳酸钾及30 mL乙腈.室温下搅拌, 向其加入3.6 mmol中间体3.加毕, 升温回流反应8~22 h.减压抽滤, 脱溶, 所得残余物以石油醚/乙酸乙酯(V:V=25:1)为洗脱剂进行柱层析分离, 得到目标化合物7a~7q.

    1, 3-二甲基-5-(3-甲基苯氧基)-1H-吡唑-4-甲醛-O-[4-(1H-吡唑-1-基)苯甲基]肟(7a):白色固体, 产率58%. m.p. 79~81 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.91 (d, J=2.4 Hz, 1H, Pyrazole-H), 7.82 (s, 1H, CH=N), 7.72 (d, J=1.6 Hz, 1H, Pyrazole-H), 7.63 (d, J=8.4 Hz, 2H, ArH), 7.38 (d, J=8.4 Hz, 2H, ArH), 7.16~7.20 (m, 1H, ArH), 6.90 (d, J=7.6 Hz, 1H, ArH), 6.66~6.70 (m, 2H, ArH), 6.46 (t, J=2.4 Hz, 1H, Pyrazole-H), 5.03 (s, 2H, CH2), 3.59 (s, 3H, NCH3), 2.38 (s, 3H, CH3), 2.31 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 156.7, 147.9, 146.8, 141.1, 141.0, 140.3, 139.7, 136.0, 129.7, 126.7, 124.5, 119.0, 115.8, 112.3, 112.2, 107.6, 100.3, 75.4, 34.2, 21.4, 14.8. Anal. calcd for C23H23N5O2: C 68.81, H 5.77, N 17.44; found C 68.94, H 5.65, N 17.53.

    1, 3-二甲基-5-(4-甲基苯氧基)-1H-吡唑-4-甲醛-O-[4-(1H-吡唑-1-基)苯甲基]肟(7b):白色固体, 产率66%. m.p. 72~74 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.91 (d, J=2.4 Hz, 1H, Pyrazole-H), 7.81 (s, 1H, CH=N), 7.72 (d, J=1.6 Hz, 1H, Pyrazole-H), 7.63 (d, J=8.4 Hz, 2H, ArH), 7.38 (d, J=8.4 Hz, 2H, ArH), 7.09 (d, J=8.4 Hz, 2H, ArH), 6.77 (d, J=8.8 Hz, 2H, ArH), 6.46 (t, J=2.0 Hz, 1H, Pyrazole-H), 5.03 (s, 2H, CH2), 3.59 (s, 3H, NCH3), 2.37 (s, 3H, CH3), 2.30 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 154.7, 148.1, 146.8, 141.1, 141.0, 139.7, 136.0, 133.2, 130.4, 129.7, 126.7, 119.0, 115.1, 107.6, 100.1, 75.3, 34.2, 20.6, 14.8. Anal. calcd for C23H23N5O2: C 68.81, H 5.77, N 17.44; found C 68.70, H 5.86, N 17.56.

    1, 3-二甲基-5-(2-甲氧基苯氧基)-1H-吡唑-4-甲醛-O-[4-(1H-吡唑-1-基)苯甲基]肟(7c):白色固体, 产率53%. m.p. 78~80 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.90 (d, J=2.0 Hz, 1H, Pyrazole-H), 7.77 (s, 1H, CH=N), 7.72 (d, J=1.2 Hz, 1H, Pyrazole-H), 7.63 (d, J=8.8 Hz, 2H, ArH), 7.37 (d, J=8.4 Hz, 2H, ArH), 6.96~7.10 (m, 2H, ArH), 6.67~6.86 (m, 2H, ArH), 6.45 (t, J=2.4 Hz, 1H, Pyrazole-H), 5.00 (s, 2H, CH2), 3.89 (s, 3H, OCH3), 3.63 (s, 3H, CH3), 2.35 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3): δ 148.9, 148.4, 146.7, 145.7, 141.1, 141.0, 139.7, 136.0, 129.6, 126.7, 124.6, 120.9, 119.0, 115.8, 112.7, 107.6, 99.6, 75.3, 56.0, 34.2, 14.9. Anal. calcd for C23H23N5O3: C 66.17, H 5.55, N 16.78; found C 66.26, H 5.47, N 16.90.

    1, 3-二甲基-5-(4-甲氧基苯氧基)-1H-吡唑-4-甲醛-O-[4-(1H-吡唑-1-基)苯甲基]肟(7d):白色固体, 产率68%. m.p. 88~90 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.91 (d, J=2.4 Hz, 1H, Pyrazole-H), 7.80 (s, 1H, CH=N), 7.71 (d, J=1.6 Hz, 1H, Pyrazole-H), 7.63 (d, J=8.8 Hz, 2H, ArH), 7.38 (d, J=8.4 Hz, 2H, ArH), 6.82 (s, 4H, ArH), 6.46 (t, J=2.4 Hz, 1H, Pyrazole-H), 5.02 (s, 2H, CH2), 3.75 (s, 3H, OCH3), 3.60 (s, 3H, CH3), 2.36 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 155.8, 150.7, 148.4, 146.9, 141.1, 141.0, 139.7, 136.0, 129.7, 126.7, 119.0, 116.3, 114.9, 107.6, 99.9, 75.3, 55.7, 34.2, 14.8. Anal. calcd for C23H23N5O3: C 66.17, H 5.55, N 16.78; found C 66.04, H 5.66, N 16.65.

    1, 3-二甲基-5-(4-三氟甲氧基苯氧基)-1H-吡唑-4-甲醛-O-[4-(1H-吡唑-1-基)苯甲基]肟(7e):黄色固体, 产率63%. m.p. 48~50 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.91 (d, J=2.4 Hz, 1H, Pyrazole-H), 7.82 (s, 1H, CH=N), 7.72 (d, J1.6 Hz, 1H, Pyrazole-H), 7.64 (d, J=8.8 Hz, 2H, ArH), 7.35 (d, J=8.4 Hz, 2H, ArH), 7.16 (d, J=8.8 Hz, 2H, ArH), 6.89 (d, J=9.2 Hz, 2H, ArH), 6.46 (t, J=2.0 Hz, 1H, Pyrazole-H), 4.98 (s, 2H, CH2), 3.61 (s, 3H, NCH3), 2.36 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 154.9, 147.1, 144.8, 141.1, 140.5, 139.8, 135.8, 129.6, 125.5 (q, J=203 Hz), 122.6, 121.7, 119.1, 119.0, 116.3, 107.6, 100.2, 75.4, 34.2, 14.5. Anal. calcd for C23H20F3-N5O3: C 58.60, H 4.28, N 14.86; found C 58.73, H 4.16, N 14.93.

    1, 3-二甲基-5-苯氧基-1H-吡唑-4-甲醛-O-[4-(1H-吡唑-1-基)苯甲基]肟(7f):黄色固体, 产率61%. m.p. 79~81 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.91 (d, J=2.4 Hz, 1H, Pyrazole-H), 7.82 (s, 1H, CH=N), 7.72 (d, J=1.6 Hz, 1H, Pyrazole-H), 7.63 (d, J=8.4 Hz, 2H, ArH), 7.36 (d, J=8.4 Hz, 2H, ArH), 7.28~7.32 (m, 2H, ArH), 7.07~7.11 (m, 1H, ArH), 6.88 (d, J=8.0 Hz, 2H, ArH), 6.46 (t, J=2.0 Hz, 1H, Pyrazole-H), 5.01 (s, 2H, CH2), 3.59 (s, 3H, N-CH3), 2.36 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 156.7, 147.7, 146.9, 141.1, 140.9, 139.7, 135.9, 130.0, 129.7, 126.7, 123.6, 119.0, 115.3, 107.6, 100.2, 75.3, 34.2, 14.8. Anal. calcd for C22H21N5O2: C 68.20, H 5.46, N 18.08; found C 68.08, H 5.33, N 18.21.

    1, 3-二甲基-5-(2-氟苯氧基)-1H-吡唑-4-甲醛-O-[4-(1H-吡唑-1-基)苯甲基]肟(7g):白色固体, 产率52%. m.p. 67~69 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.91 (d, J=2.8 Hz, 1H, Pyrazole-H), 7.81 (s, 1H, CH=N), 7.72 (d, J=1.6 Hz, 1H, Pyrazole-H), 7.63 (d, J=8.4 Hz, 2H, ArH), 7.36 (d, J=8.4 Hz, 2H, ArH), 6.72~7.19 (m, 4H, ArH), 6.46 (t, J=2.4 Hz, 1H, Pyrazole-H), 4.98 (s, 2H, CH2), 3.65 (s, 3H, CH3), 2.34 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 152.0 (d, J=247 Hz), 147.3, 147.0, 144.3, 144.2, 141.4, 141.1, 140.5, 139.7, 135.9, 129.7, 126.7, 124.6, 119.0, 117.1 (d, J=18 Hz), 116.7, 107.6, 99.9, 75.4, 34.2, 14.5. Anal. calcd for C22H20FN5O2: C 65.17, H 4.97, N 17.27; found C 65.04, H 5.09, N 17.16.

    1, 3-二甲基-5-(3-氟苯氧基)-1H-吡唑-4-甲醛-O-[4-(1H-吡唑-1-基)苯甲基]肟(7h):黄色固体, 产率54%. m.p. 64~66 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.91 (d, J=2.4 Hz, 1H, Pyrazole-H), 7.83 (s, 1H, CH=N), 7.72 (d, J=1.6 Hz, 1H, Pyrazole-H), 7.63 (d, J=8.8 Hz, 2H, ArH), 7.36 (d, J=8.4 Hz, 2H, ArH), 7.22~7.26 (m, 1H, ArH), 6.77~6.82 (m, 1H, ArH), 6.60~6.67 (m, 2H, ArH), 6.46 (t, J=2.0 Hz, 1H, Pyrazole-H), 5.00 (s, 2H, CH2), 3.60 (s, 3H, N-CH3), 2.36 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 163.5 (d, J=247 Hz), 157.7, 157.6, 147.0, 141.1, 140.5, 139.7, 135.9, 130.9, 130.8, 129.6, 126.7, 119.0, 110.9, 110.7 (d, J=21 Hz), 107.6, 103.5 (d, J=26 Hz), 100.4, 75.4, 34.2, 14.5. Anal. calcd for C22H20FN5O2: C 65.17, H 4.97, N 17.27; found C 65.29, H 4.84, N 17.35.

    1, 3-二甲基-5-(3-氯苯氧基)-1H-吡唑-4-甲醛-O-[4-(1H-吡唑-1-基)苯甲基]肟(7i):黄色固体, 产率57%. m.p. 58~60 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.91 (d, J=2.4 Hz, 1H, Pyrazole-H), 7.82 (s, 1H, CH=N), 7.72 (d, J=1.6 Hz, 1H, Pyrazole-H), 7.63 (d, J=8.4 Hz, 2H, ArH), 7.35 (d, J=8.8 Hz, 2H, ArH), 6.75~7.24 (m, 4H, ArH), 6.47 (t, J=2.4 Hz, 1H, Pyrazole-H), 5.00 (s, 2H, CH2), 3.60 (s, 3H, NCH3), 2.36 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 157.1, 147.1, 146.8, 141.1, 140.5, 139.7, 135.9, 135.4, 130.7, 130.73, 129.6, 123.9, 119.0, 115.9, 113.5, 107.6, 100.4, 75.4, 34.2, 14.5. Anal. calcd for C22H20ClN5O2: C 62.63, H 4.78, N 16.60; found C 62.50, H 4.89, N 16.72.

    1, 3-二甲基-5-(4-氯苯氧基)-1H-吡唑-4-甲醛-O-[4-(1H-吡唑-1-基)苯甲基]肟(7j):白色固体, 产率63%. m.p. 97~99 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.92 (d, J=2.8 Hz, 1H, Pyrazole-H), 7.81 (s, 1H, CH=N), 7.72 (d, J=1.6 Hz, 1H, Pyrazole-H), 7.64 (d, J=8.4 Hz, 2H, ArH), 7.32 (d, J=8.4 Hz, 2H, ArH), 7.25 (d, J=8.4 Hz, 2H, ArH), 6.82 (d, J=9.2 Hz, 2H, ArH), 6.46 (t, J=2.4 Hz, J=2.0 Hz, 1H, Pyrazole-H), 4.99 (s, 2H, CH2), 3.60 (s, 3H, CH3), 2.35 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 155.2, 147.1, 147.0, 141.1, 140.5, 139.7, 135.9, 129.9, 129.6, 128.7, 126.7, 119.0, 116.6, 107.6, 100.2, 75.4, 34.2, 14.5. Anal. calcd for C22H20ClN5O2: C 62.63, H 4.78, N 16.60; found C 62.75, H 4.65, N 16.68.

    1, 3-二甲基-5-(2-溴苯氧基)-1H-吡唑-4-甲醛-O-[4-(1H-吡唑-1-基)苯甲基]肟(7k):黄色固体, 产率54%. m.p. 90~92 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.91 (d, J=2.4 Hz, 1H, Pyrazole-H), 7.80 (s, 1H, CH=N), 7.72 (d, J=1.6 Hz, 1H, Pyrazole-H), 7.59~7.64 (m, 3H, ArH), 7.35 (d, J=8.4 Hz, 2H, ArH), 7.16~7.20 (m, 1H, ArH), 6.95~6.99 (m, 1H, ArH), 6.64 (d, J=8.4 Hz, 1H, ArH), 6.46 (t, J=2.0 Hz, 1H, Pyrazole-H), 4.99 (s, 2H, CH2), 3.63 (s, 3H, NCH3), 2.35 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 153.1, 147.1, 147.0, 141.1, 140.4, 139.7, 135.9, 134.0, 129.7, 128.7, 126.7, 124.9, 119.0, 115.3, 111.4, 107.6, 100.2, 75.4, 34.2, 14.5. Anal. calcd for C22H20BrN5O2: C 56.66, H 4.32, N 15.02; found C 56.53, H 4.42, N 15.13.

    1, 3-二甲基-5-(4-溴苯氧基)-1H-吡唑-4-甲醛-O-[4-(1H-吡唑-1-基)苯甲基]肟(7l):白色固体, 产率65%. m.p. 104~106 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.92 (d, J=2.4 Hz, 1H, Pyrazole-H), 7.81 (s, 1H, CH=N), 7.72 (s, 1H, Pyrazole-H), 7.64 (d, J=8.4 Hz, 2H, Ar-H), 7.40 (d, J=8.8 Hz, 2H, Ar-H), 7.33 (d, J=8.4 Hz, 2H, ArH), 6.76 (d, J=8.8 Hz, 2H, ArH), 6.46 (s, 1H, Pyrazole-H), 4.99 (s, 2H, CH2), 3.59 (s, 3H, CH3), 2.34 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 155.8, 147.1, 147.0, 141.1, 140.5, 139.8, 135.9, 132.9, 129.7, 126.8, 119.0, 117.1, 116.1, 107.7, 100.3, 75.4, 34.2, 14.5. Anal. calcd for C22H20BrN5O2: C 56.66, H 4.32, N 15.02; found C 56.78, H 4.21, N 14.90.

    1, 3-二甲基-5-(4-碘苯氧基)-1H-吡唑-4-甲醛-O-[4-(1H-吡唑-1-基)苯甲基]肟(7m):黄色固体, 产率62%. m.p. 80~82 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.94 (d, J=2.4 Hz, 1H, Pyrazole-H), 7.80 (s, 1H, CH=N), 7.72 (d, J=1.6 Hz, 1H, Pyrazole-H), 7.65 (d, J=8.4 Hz, 2H, ArH), 7.59 (d, J=8.8 Hz, 2H, ArH), 7.34 (d, J=8.4 Hz, 2H, ArH), 6.65 (d, J=8.8 Hz, 2H, ArH), 6.46 (t, J=2.0 Hz, 1H, Pyrazole-H), 4.99 (s, 2H, CH2), 3.59 (s, 3H, NCH3), 2.35 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 156.6, 147.0, 146.9, 141.1, 140.5, 139.7, 138.8, 135.9, 129.7, 126.8, 119.0, 117.5, 107.6, 100.3, 86.4, 75.4, 34.2, 14.5. Anal. calcd for C22H20IN5O2: C 51.47, H 3.93, N 13.64; found C 51.34, H 4.05, N 13.75.

    1, 3-二甲基-5-(2, 3-二氟苯氧基)-1H-吡唑-4-甲醛-O-[4-(1H-吡唑-1-基)苯甲基]肟(7n):白色固体, 产率51%. m.p. 105~107 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.92 (d, J=2.4 Hz, 1H, Pyrazole-H), 7.82 (s, 1H, CH=N), 7.72 (d, J=1.6 Hz, 1H, Pyrazole-H), 7.63 (d, J=8.8 Hz, 2H, ArH), 7.35 (d, J=8.4 Hz, 2H, ArH), 6.88~6.95 (m, 2 H, ArH), 6.46~6.53 (m, 1H, ArH), 6.46 (t, J=2.0 Hz, 1H, Pyrazole-H), 4.98 (s, 2H, CH2), 3.66 (s, 3H, NCH3), 2.34 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 151.6 (d, J=247 Hz), 147.1, 146.6, 145.7, 142.4, 141.1, 140.2, 139.7, 135.9, 129.5, 126.7, 123.5, 119.0, 112.2 (d, J=18 Hz), 111.5, 107.6, 100.0, 75.4, 34.2, 14.2. Anal. calcd for C22H19F2N5O2: C 62.41, H 4.52, N 16.54; found C 62.53, H 4.63, N 16.42.

    1, 3-二甲基-5-(2, 4-二氯苯氧基)-1H-吡唑-4-甲醛-O-[4-(1H-吡唑-1-基)苯甲基]肟(7o):白色固体, 产率53%. m.p. 93~95 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.92 (d, J=2.4 Hz, 1H, Pyrazole-H), 7.80 (s, 1H, CH=N), 7.72 (d, J=1.6 Hz, 1H, Pyrazole-H), 7.64 (d, J=8.8 Hz, 2H, ArH), 7.42 (d, J=2.4 Hz, 1H, ArH), 7.32 (d, J=8.8 Hz, 2H, ArH), 7.07~7.10 (m, 1H, ArH), 6.59 (d, J=8.4 Hz, 1H, ArH), 6.46 (t, J=2.0 Hz, 1H, Pyrazole-H), 4.97 (s, 2H, CH2), 3.63 (s, 3H, NCH3), 2.33 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 150.9, 147.1, 146.5, 141.1, 140.1, 139.7, 135.8, 130.5, 129.5, 129.0, 127.9, 126.7, 123.6, 119.0, 116.2, 107.6, 100.1, 75.4, 34.2, 14.2. Anal. calcd for C22H19Cl2N5O2: C 57.91, H 4.20, N 15.35; found C 57.78, H 4.32, N 15.46.

    1-(4-甲基苯基)-3-甲基-5-(4-甲基苯氧基)-1H-吡唑-4-甲醛-O-[4-(1H-吡唑-1-基)苯甲基]肟(7p):白色固体, 产率61%. m.p. 107~109 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.91 (d, J=2.4 Hz, 1H, Pyrazole-H), 7.83 (s, 1H, CH=N), 7.72 (d, J=1.2 Hz, 1H, Pyrazole-H), 7.64 (d, J=8.8 Hz, 2H, ArH), 7.46 (d, J=8.4 Hz 2H, ArH), 7.39 (d, J=8.8 Hz, 2H, ArH), 7.14 (d, J=8.4 Hz, 2H, ArH), 7.04 (d, J=8.4 Hz, 2H, ArH), 6.78 (d, J=8.8 Hz, 2H, ArH), 6.46 (t, J=2.0 Hz, 1H, Pyrazole-H), 5.05 (s, 2H, CH2), 2.45 (s, 3H, CH3), 2.31 (s, 3H, CH3), 2.26 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 154.7, 148.1, 147.5, 141.1, 140.9, 139.7, 137.0, 135.9, 135.1, 133.1, 130.3, 129.7, 129.6, 126.7, 122.1, 119.0, 115.3, 107.6, 101.6, 75.4, 21.0, 20.5, 15.1. Anal. calcd for C29H27N5O2: C 72.94, H 5.70, N 14.66; found C 72.81, H 5.82, N 14.75.

    1-(4-甲基苯基)-3-甲基-5-(4-氟苯氧基)-1H-吡唑-4-甲醛-O-[4-(1H-吡唑-1-基)苯甲基]肟(7q):白色固体, 产率57%. m.p. 100~102 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.92 (d, J=2.4 Hz, 1H, Pyrazole-H), 7.85 (s, 1H, CH=N), 7.73 (d, J=1.2 Hz, 1H, Pyrazole-H), 7.65 (d, J=8.8 Hz, 2H, ArH), 7.44 (d, J=8.4 Hz, 2H, ArH), 7.38 (d, J=8.4 Hz, 2H, ArH), 7.16 (d, J=8.0 Hz, 2H, ArH), 6.81~6.95 (m, 4H, ArH), 6.46 (t, J=2.4 Hz, 1H, Pyrazole-H), 5.04 (s, 2H, CH2), 2.44 (s, 3H, CH3), 2.32 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 158.7 (d, J=241 Hz), 152.6, 148.2, 147.0, 141.1, 140.5, 139.8, 137.3, 135.9, 135.0, 129.7, 129.6, 126.7, 122.2, 119.0, 116.8, 116.7, 116.4 (d, J=24 Hz), 107.7, 101.6, 75.5, 21.0, 14.9. Anal. calcd for C28H24FN5O2: C 69.84, H 5.02, N 14.54; found C 69.96, H 5.10, N 14.43.

    3.5   生物活性测试

    杀虫试验方法分别如下:对于化合物, 用分析天平称取一定质量的原药, 用含吐温-80乳化剂的DMF溶解配制成1.0%母液, 然后用蒸馏水稀释备用.每个处理3次重复, 设空白对照.杀虫活性测试所选昆虫分别为粘虫(Oriental armyworm)、蚜虫(Aphis medicaginis)和褐飞虱(Nilaparvata lugens).对照药剂分别为啶虫丙醚(Pyridalyl)和吡虫啉(Imidacloprid).蚜虫和褐飞虱:采用喷雾法.首先, 分别将接有蚜虫的蚕豆叶片和接有褐飞虱的水稻苗于Potter喷雾塔下喷雾处理, 处理后蚜虫置于20~22 ℃观察室内培养, 褐飞虱置于24~27 ℃观察室内培养, 调查药后2 d的死活虫数, 并进行统计分析.粘虫:采用浸叶碟法.首先, 将适量玉米叶在配好的药液中充分浸润后自然阴干, 放入垫有滤纸的培养皿中, 接粘虫3龄中期幼虫10头/皿, 置于24~27 ℃观察室内培养, 调查药后2 d的死活虫数, 并进行统计分析.

    辅助材料(Supporting Information)  化合物7a~7q1H NMR和13C NMR图谱.这些材料可以免费从本刊网站(http://sioc-journal.cn/)上下载.

    1. [1]

      Li, Y.; Zhang, H. Q.; Liu, J.; Yang, X. P.; Liu, Z. J. J. Agric. Food Chem. 2006, 54, 3636. doi: 10.1021/jf060074f

    2. [2]

      Dai, H.; Li, Y. Q.; Du, D.; Qin, X.; Zhang, X.; Yu, H. B.; Fang, J. X. J. Agric. Food Chem. 2008, 56, 10805. doi: 10.1021/jf802429x

    3. [3]

      Hamaguchi, H.; Kajihara, O.; Katoh, M. J. Pestic. Sci. 1995, 20, 173. doi: 10.1584/jpestics.20.173

    4. [4]

      Motoba, K.; Nishizawa, H.; Suzuki, T.; Hamaguchi, H.; Uchida, M.; Funayama, S. Pestic. Biochem. Physiol. 2000, 67, 73. doi: 10.1006/pest.2000.2477

    5. [5]

      Park, H. J.; Lee, K.; Park, S. J.; Ahn, B.; Lee, J. C.; Cho, H. Y.; Lee, K. I. Bioorg. Med. Chem. Lett. 2005, 15, 3307. doi: 10.1016/j.bmcl.2005.03.082

    6. [6]

      顾保权, 朱伟清, 范文政, 钱虹, 刘建梅, 张爱庆, 沈荣仙, 现代农药, 2002, 1, 9.Gu, B. Q.; Zhu, W. Q.; Fan, W. Z.; Qian, H.; Liu, J. M.; Zhang, A. Q.; Shen, R. X. Modern Agrochem. 2002, 1, 9(in Chinese).

    7. [7]

      范文政, 顾保权, 朱伟清, 张一宾, 现代农药, 2005, 4, 9. doi: 10.3969/j.issn.1671-5284.2005.02.002Fan, W. Z.; Gu, B. Q.; Zhu, W. Q.; Zhang, Y. B. Modern Agrochem. 2005, 4, 9(in Chinese). doi: 10.3969/j.issn.1671-5284.2005.02.002

    8. [8]

      Lahm, G. P., Selby, T. P.; Freudenberger, J. H.; Stevenson, T. M.; Myers, B. J.; Seburyamo, G.; Smith, B. K; Flexner, L.; Clark, C. E.; Cordova, D. Bioorg. Med. Chem. Lett. 2005, 15, 4898. doi: 10.1016/j.bmcl.2005.08.034

    9. [9]

      戴红, 刘建兵, 苗文科, 吴珊珊, 秦雪, 张欣, 王婷婷, 方建新, 有机化学, 2011, 31, 1662. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yjhu201111030&dbname=CJFD&dbcode=CJFQDai, H.; Liu, J. B.; Miao, W. K.; Wu, S. S.; Qin, X.; Zhang, X.; Wang, T. T.; Fang, J. X. Chin. J. Org. Chem. 2011, 31, 1662(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yjhu201111030&dbname=CJFD&dbcode=CJFQ

    10. [10]

      戴红, 于海波, 刘建兵, 秦雪, 王婷婷, 张欣, 秦振芳, 方建新, 有机化学, 2013, 33, 1104. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yjhu201305031&dbname=CJFD&dbcode=CJFQDai, H.; Yu, H. B.; Liu, J. B.; Qin, X.; Wang, T. T.; Zhang, X.; Qin. Z. F.; Fang, J. X. Chin. J. Org. Chem. 2013, 33, 1104(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yjhu201305031&dbname=CJFD&dbcode=CJFQ

    11. [11]

      Ouyang, G. P.; Cai, X. J.; Chen, Z.; Song, B. A.; Bhadury, P. S.; Yang, S.; Jin, L. H.; Xue, W.; Hu, D. Y.; Zeng, S. J. Agric. Food Chem. 8, 56, 10160.

    12. [12]

      Hamaguchi, H.; Kajihara, O.; Katoh, M. J. Pestic. Sci. 1995, 20, 173. doi: 10.1584/jpestics.20.173

    13. [13]

      Swanson, M. B.; Ivancic, W. A.; Saxena, A. M.; Allton, J. D.; O'Brien, G. K.; Suzuki, T.; Nishizawa, H.; Nokata, M. J. Agric. Food Chem. 1995, 43, 513. doi: 10.1021/jf00050a048

    14. [14]

      Dai, H.; Xiao, Y. S.; Li, Z.; Xu, X. Y.; Qian, X. H. Chin. Chem. Lett. 2014, 25, 1014. doi: 10.1016/j.cclet.2014.06.011

    15. [15]

      Fu, C. R.; Peng, J.; Ning, Y.; Liu, M.; Shan, P. C.; Liu, J.; Li, Y. Q.; Hu, F. Z.; Zhu, Y. Q.; Yang, H. Z.; Zou, X. M. Pest. Manage. Sci. 2014, 70, 7.

    16. [16]

      Wang, S. L.; Shi, Y. J.; He, H. B.; Li, Y.; Li, Y.; Dai, H. Chin. Chem. Lett. 2015, 26, 672. doi: 10.1016/j.cclet.2015.04.017

    17. [17]

      Park, H. J.; Lee, K.; Park, S. J.; Ahn, B.; Lee, J. C.; Cho, H. Y.; Lee, K. I. Bioorg. Med. Chem. Lett. 2005, 15, 3307. doi: 10.1016/j.bmcl.2005.03.082

    18. [18]

      Tanaka, A.; Terasawa, T.; Hagihara, H.; Sakuma, Y.; Ishibe, N.; Sawada, M.; Takasugi, H.; Tanaka, H. J. Med. Chem. 1998, 41, 2390. doi: 10.1021/jm9800853

    19. [19]

      Park, M. S.; Park, H. J.; Park, K. H.; Lee, K. I. Synth. Commun. 2004, 34, 1541. doi: 10.1081/SCC-120030741

    20. [20]

      Ma, J. A.; Huang, R. Q.; Feng, L.; Song, J.; Qiu, D. W. Chem. Res. Chin. Univ. 2003, 19, 297.

    21. [21]

      戴红, 陈佳, 洪宇, 袁斌颖, 范崇光, 马瑞媛, 梁志鹏, 石健, 有机化学, 2017, 37, 1542. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yjhu201706028&dbname=CJFD&dbcode=CJFQDai, H.; Chen, J.; Hong, Y.; Yuan, B. Y.; Fan, C. G.; Ma, R. Y.; Liang, Z. P.; Shi, J. Chin. J. Org. Chem. 2017, 37, 1542(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yjhu201706028&dbname=CJFD&dbcode=CJFQ

  • 图 1  吡螨胺、氯虫苯甲酰胺、唑螨酯和化合物A~E的化学结构式

    Figure 1  Chemical structures of tebufenpyrad, chlorantraniliprole, fenpyroximate, and compounds A~E

    图 2  目标化合物7的分子设计示意图

    Figure 2  Design strategy of the target compounds 7

    图式 1  目标化合物7的合成路线

    Scheme 1  Synthetic route of the title compounds 7

    7a: R1=CH3, R2=3-CH3; 7b: R1=CH3, R2=4-CH3; 7c: R1=CH3, R2= 2-OCH3; 7d: R1=CH3, R2=4-OCH3; 7e: R1=CH3, R2=4-OCF3; 7f R1=CH3, R2=H; 7g: R1=CH3, R2=2-F; 7h: R1=CH3, R2=3-F; 7i: R1=CH3, R2=3-Cl; 7j: R1=CH3, R2=4-Cl; 7k: R1=CH3, R2=2-Br; 7l: R1=CH3, R2=4-Br; 7m: R1=CH3, R2=4-I; 7n: R1=CH3, R2=2, 3-F2; 7o: R1=CH3, R2=2, 4-Cl2; 7p: R1=4-CH3C6H4, R2=4-CH3; 7q: R1=4-CH3C6H4, R2=4-F

    表 1  不同反应条件对目标化合物7d合成收率的影响

    Table 1.  Effects of reaction conditions on the synthesis of the target compound 7d

    Entry Base Solvent Reaction condition Yield/%
    1 Et3N CH3COCH3 Reflux for 12 h 0
    2 NaHCO3 CH3COCH3 Reflux for 12 h 0
    3 K2CO3 CH3COCH3 Reflux for 12 h 20
    4 K2CO3 CH3CN Reflux for 12 h 68
    5 Cs2CO3 CH3CN Reflux for 12 h 70
    6 K2CO3 DMF Reflux for 12 h 41
    下载: 导出CSV

    表 2  目标化合物7a~7q的杀虫活性(死亡率/%)a

    Table 2.  Insecticidal activities (mortality/%) of target compounds 7a~7q

    Compd. Oriental armyworm Aphis medicaginis Nilaparvata lugens
    500 μg/mL100 μg/mL500 μg/mL100 μg/mL500 μg/mL100 μg/mL
    7a100010001000
    7b100010001000
    7c100000
    7d1000950900
    7e1000100010030
    7f1000100701000
    7g10001000800
    7h1000100801000
    7i8001008010030
    7j10008000
    7k100010000
    7l10020100501000
    7m1000100701000
    7n10008000
    7o10001000800
    7p100000
    7q000700
    Pyridalyl100100
    Imidacloprid100100100100
    a— refers to not tested.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  7
  • 文章访问数:  2101
  • HTML全文浏览量:  268
文章相关
  • 发布日期:  2017-12-25
  • 收稿日期:  2017-08-10
  • 修回日期:  2017-09-05
  • 网络出版日期:  2017-12-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章