Citation: Li Minghui, Song Buer, Imerhasan, Mukhtar. Progress in Synthesis and Bioactivity of Spiroisoxazoline Compounds[J]. Chinese Journal of Organic Chemistry, ;2018, 38(2): 378-400. doi: 10.6023/cjoc201708013 shu

Progress in Synthesis and Bioactivity of Spiroisoxazoline Compounds

  • Corresponding author: Imerhasan, Mukhtar, imerhasan@xju.edu.cn
  • Received Date: 8 August 2017
    Revised Date: 12 September 2017
    Available Online: 19 February 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21462043, 21062019)the National Natural Science Foundation of China 21462043the National Natural Science Foundation of China 21062019

Figures(52)

  • Spiroisoxazoline compounds have so extensive biological activity that they are important drug intermediates, and they are also important organic synthetic intermediates. The relevant reports for forty years are reviewed in this paper. On the basis of reaction mechanisms, the synthetic methods of spiroisoxazoline compounds are classified into the following five types:oxidation, intramolecular condensation, nucleophilic addition, 1, 3-dipolar cycloaddition, and other methods. Among them, the most widely used method is 1, 3-dipolar cycloadditio. This method is of simple operation, high yield and good stereoselectivity, but one of its synthons-carbon dipolarophiles is not easy to get, and generally goes through many steps of reaction to prepare. In addition, their biological activities are summarized as six categories:the activity of inhibiting the growth of the larvae, the activity of slowing hardening of the arteries, the activity for the treatment of pain, the activity of lowering blood sugar, the anticancer activity and the antibacterial activity.
  • 加载中
    1. [1]

      Wei, R. -B.; Liu, Y.; Liang, Y. Chin. J. Org. Chem. 2009, 29, 476(in Chinese).

    2. [2]

      Nicholas, G. M.; Newton, G. L.; Fahey, R. C.; Bewley, C. A. Org. Lett. 2001, 3, 1543.  doi: 10.1021/ol015845+

    3. [3]

      Gotsbacher, M.; Karuso, P. Mar. Drugs 2015, 13, 1389.  doi: 10.3390/md13031389

    4. [4]

      Goyard, D.; Kónya, B.; Chajistamatiou, A. S.; Chrysina, E. D.; Leroy, J.; Balzarin, S.; Tournier, M.; Tousch, D.; Petit, P.; Duret, C.; Maurel, P.; Somsák, L.; Docsa, T.; Gergely, P.; Praly, J. P.; Milhau, J. A.; Vidal, S. Eur. J. Med. Chem. 2016, 108, 444.  doi: 10.1016/j.ejmech.2015.12.004

    5. [5]

      Abolhasani, H.; Zarghi, A.; Mivehroud, M. H.; Alizadeh, A. A.; Mojarrad, J. S.; Dastmalchi, S. Iran. J. Pharm. Res. 2015, 14, 141.
       

    6. [6]

      Najim, N.; Bathich Y.; Zain, M. M.; Hamzah, A. S.; Shaameri, Z. Molecules 2010, 15, 9340.  doi: 10.3390/molecules15129340

    7. [7]

      Rotem, M.; Carmely, S.; Kashman, Y.; Loya, Y. Tetrahedron 1983, 39, 667.  doi: 10.1016/S0040-4020(01)91843-5

    8. [8]

      Watarai, S.; Katsuyama, H.; Umehara, A.; Sato, H. J. Polym. Sci. Polym. Chem. Ed. 1978, 16, 2039.  doi: 10.1002/pol.1978.170160820

    9. [9]

      Dapporto, B. Y.; Paoli, P.; Brandi, A.; Sarlo, F. D.; Goti, A.; Guarna, A. Acta Crystallogr. 1992, B48, 234.
       

    10. [10]

      Mullen, G. B.; Bennett, G. A.; Georgiev, V. S. Liebigs Ann. Chem. 1990, 1, 109.

    11. [11]

      Ihara, M.; Tokunaga, Y. J.; Taniguchi, N.; Fukumoto, K. J. Org. Chem. 1991, 56, 5281.  doi: 10.1021/jo00018a014

    12. [12]

      Occhiato, E. G.; Guarna, A.; Brandi, A.; Goti, A.; Sarlot, F. A. J. Org. Chem. 1992, 57, 4206.  doi: 10.1021/jo00041a027

    13. [13]

      Fišera, L.; Sauter, F.; Fr hlich, Y.; Mereiter, K. Monatsh. Chem. 1994, 125, 909.  doi: 10.1007/BF00812705

    14. [14]

      Gallos, J. K.; Koftis, T. V. J. Chem. Soc., Perkin Trans. 1 2001, 415.
       

    15. [15]

      Singh, A.; Roth, G. P. Org. Lett. 2011, 13, 2118.  doi: 10.1021/ol200547m

    16. [16]

      Savage, G. P. Curr. Org. Chem. 2010, 14, 1478.  doi: 10.2174/138527210791616812

    17. [17]

      Dadiboyena, S. Curr. Org. Synth. 2013, 10, 661.  doi: 10.2174/1570179411310050001

    18. [18]

      Kozikowski, A. P. Acc. Chem. Res. 1984, 17, 410.  doi: 10.1021/ar00108a001

    19. [19]

      Wang, C. -M.; Wang, Y. -F.; Zhang, G. -X.; Feng, S. -J. J. Beijing Normal Univ. (Nat. Sci. Ed.) 2001, 37, 787(in Chinese).  doi: 10.3321/j.issn:0476-0301.2001.06.016

    20. [20]

      Fan, Y. -J.; He, T. -T.; Yang, J. -C.; Liu, C. -L. Agrochem. Res. Appl. 2010, 14, 1(in Chinese).

    21. [21]

      (a) Bathich, Y. ; Imerhasan, M. ; Henneböhle, M. The 6th Iminiumsalz-Tagung (ImSaT-6), Stimpfach Rechenberg, Stuttgart, 2003, pp. 15~18.
      (b) Frey, W.; Imerhasan, M.; Bathich, Y.; Jäger, V. Z. Kristallogr. NCS. 2005, 220, 151.
      (c) Jäger, V.; Frey, W.; Bathich, Y.; Shiva, S.; Ibrahim, M.; Henneböhle, M.; LeRoy, P. Y.; Imerhasan, M. Z. Naturforsch. 2010, 65b, 821.
      (d) Hudabergen, A. M.S. Thesis, Xinjiang University, Urumqi, 2012 (in Chinese).
      (阿依努尔, 硕士论文, 新疆大学, 乌鲁木齐, 2012.)

    22. [22]

      Müller, G.; Frischleder, H.; Mühlst dt, M. J. Prakt. Chem. 1969, 311, 118.  doi: 10.1002/prac.19693110117

    23. [23]

      Tong, Z. -S.; Gan, G. Z. Acta Chim. Sinica 1983, 41, 380(in Chinese).

    24. [24]

      Forrester, A. R.; Thomson, R. H.; Woo, S. O. J. Chem. Soc., Perkin Trans. 1 1975, 2340.
       

    25. [25]

      Forrester, A. R.; Thomson, R. H.; Woo, S. O. J. Chem. Soc., Perkin Trans. 1 1975, 2348.

    26. [26]

      Murakata, M.; Tamura, M.; Hoshino, O. J. Org. Chem. 1997, 62, 4428.  doi: 10.1021/jo970082i

    27. [27]

      Marsini, M. A.; Huang, Y.; Van De Water, R. W.; Pettus, T. R. Org. Lett. 2007, 9, 3229.  doi: 10.1021/ol0710257

    28. [28]

      Harhash, A. H.; Elnagdi, M. H.; Kassab, N. A. L.; Negm, A. M. J. Chem. Eng. Data 1975, 20, 120.  doi: 10.1021/je60064a018

    29. [29]

      Sosnovskikh, V. Y; Usachev, B. I; Sizov, A. Y.; Kodess, M. I. Tetrahedron Lett. 2004, 45, 7351.  doi: 10.1016/j.tetlet.2004.07.158

    30. [30]

      Das, P.; Valente, E. J.; Hamme, A. T. Eur. J. Org. Chem. 2014, 13, 2659.

    31. [31]

      Das, P.; Hamme, I. I.; Ashton, T. Eur. J. Org. Chem. 2015, 23, 5159.

    32. [32]

      d'Alcontres, G. S.; Caristi, C.; Ferlazzo, A.; Gattuso, M. J. Chem. Soc., Perkin Trans. 1 1976, 1694.

    33. [33]

      Nesi, R.; Chimichi, S.; Sarti-Fantoni, P.; Tedeschi; Diomi, D. J. Chem. Soc., Perkin Trans. 1 1985, 1871.
       

    34. [34]

      Sammelson, R. E.; Gurusinghe, C. D.; Kurth, J. M.; Olmstead, M. M.; Kurth, M. J. J. Org. Chem. 2002, 67, 876.  doi: 10.1021/jo010895d

    35. [35]

      McClendon, E. M.; Omollo, A. O.; Valente, E. J.; Hamme, A. T. Tetrahedron Lett. 2009, 50, 533.  doi: 10.1016/j.tetlet.2008.11.053

    36. [36]

      Das, P.; Omollo, A. O.; Sitole, L. J.; McClendon, E.; Valente, E. J.; Raucher, D.; Walker, L. R.; Hamme, A. T. Tetrahedron Lett. 2015, 56, 1794.  doi: 10.1016/j.tetlet.2015.02.059

    37. [37]

      Pearson, W. H.; Padwa, A. Synthetic Applications of 1, 3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products, John Wiley & Sons, New York, 2002, pp. 1~900.

    38. [38]

      Kobayashi, S.; Jorgensen, K. A. In Cycloadditions in Organic Synthesis, John Wiley & Sons, New York, 2002, pp. 211~328.

    39. [39]

      Imerhasan, M.; Wang, T.; Setiwaldi, H.; Kurban, O.; Turghun, M. Chin. J. Org. Chem. 2010, 30, 1884(in Chinese).

    40. [40]

      Liwayidin, M.; Imerhasan, M.; Mahmud, A. M.; Setiwaldi, H.; Liu, H. J. Chin. J. Org. Chem. 2014, 34, 1235(in Chinese).
       

    41. [41]

      Houk, K. N.; Sims, J.; Duke, R. E.; Strozier, R. W.; George, J. K. J. Am. Chem. Soc. 1973, 95, 7287.  doi: 10.1021/ja00803a017

    42. [42]

      Marquerite, S. C.; James, U. L. Jr. J. Org. Chem. 1967, 32, 1577.  doi: 10.1021/jo01280a061

    43. [43]

      Christoph, G.; Reinhard, R. J. Org. Chem. 1968, 33, 476.  doi: 10.1021/jo01265a120

    44. [44]

      Teruaki, M.; Toshio, H. J. Am. Soc. 1960, 82, 5339.  doi: 10.1021/ja01505a017

    45. [45]

      Li, J. -T.; Li, X., L.; Li, T. S. Chin. J. Org. Chem. 2006, 26, 1594(in Chinese).  doi: 10.3321/j.issn:0253-2786.2006.11.023

    46. [46]

      Li, Z. -G. Preparation of Organic Intermediate, 2nd ed., Chemical Industry Press, Beijing, 2002, p. 315(in Chinese).

    47. [47]

      Fan, N. -T. Handbook of Organic Synthesis, Beijing Institute of Technology Press, Beijing, 1992, p. 551(in Chinese).

    48. [48]

      Liu, K. -C.; Howe, R. H. J. Org. Chem. 1983, 48, 4590.  doi: 10.1021/jo00172a030

    49. [49]

      Howe, R. K.; Shelton, B. R.; Liu, K. -C. J. Org. Chem. 1985, 50, 903.  doi: 10.1021/jo00206a043

    50. [50]

      Lefkaditis, D. A.; Argyropoulos, N. G.; Nicolaides, D. N. Liebigs Ann. Chem. 1986, 11, 1863.
       

    51. [51]

      Guarna, A.; Brandi, A.; Sarlo, F.; Goti, A.; Pericciuoli, F. J. Org. Chem. 1988, 53, 2426.  doi: 10.1021/jo00246a007

    52. [52]

      Fišera, L.; Sauter, F.; Fr hlich, J.; Feng, Y.; Ertl, P.; Mereiter, K. Monatsh. Chem. 1994, 125, 553.  doi: 10.1007/BF00811848

    53. [53]

      Mishriky, N.; Asaad, F. M.; Ibrahim, Y. A.; Girgis, A. S. J. Chem. Res., Synop. 1997, 12, 438.
       

    54. [54]

      Park, K. H.; Kurth, M. J. J. Org. Chem. 2000, 65, 3520.  doi: 10.1021/jo000152c

    55. [55]

      Cheng, W. C.; Liu, Y. -N.; Wong, M. Y.; Wong, M.; Olmstead, M. M.; Lam, K. S.; Kurth, M. J. Org. Chem. 2002, 67, 5673.  doi: 10.1021/jo025611j

    56. [56]

      Bardhan, S.; Schmitt, D. C.; Porco, J. A. Jr. Org. Lett. 2006, 8, 927.  doi: 10.1021/ol053115m

    57. [57]

      Benltifa, M.; Vidal, S.; Gueyrard, D.; Goekjian, P. G.; Msaddek, M.; Praly, J. P. Tetrahedron Lett. 2006, 47, 6143.  doi: 10.1016/j.tetlet.2006.06.058

    58. [58]

      Zhang, P. -Z.; Li, X. -L.; Chen, H.; Li, Y. -N.; Wang, R. Tetrahedron Lett. 2007, 48, 7813.  doi: 10.1016/j.tetlet.2007.09.007

    59. [59]

      Shih, H. W.; Cheng, W. C. Tetrahedron Lett. 2008, 49, 1008.  doi: 10.1016/j.tetlet.2007.12.008

    60. [60]

      Li, X. -F.; Yu, X. -Y.; Yi, P. -G. Chin. J. Chem. 2010, 28, 434.  doi: 10.1002/cjoc.v28:3

    61. [61]

      Guggenheim, K. G.; Butler, J. D.; Painter, P. P.; Lorsbach, B. A.; Tantillo, D. J.; Kurth, M. J. J. Org. Chem. 2011, 76, 5803.  doi: 10.1021/jo200924y

    62. [62]

      Yu, H. -Y.; Liu, B.; Zheng, A. -T.; Li, X. -F. J. Hunan Univ. Sci. Technol. (Nat. Sci. Ed.) 2012, 27, 90(in Chinese).

    63. [63]

      Li, X.; Yi, R.; Liu, B.; Zheng, A.; Yu, X.; Yi, P. J. Heterocycl. Chem. 2014, 51, 274.  doi: 10.1002/jhet.1610

    64. [64]

      Harding, S. L.; Savage, G. P. Org. Biomol. Chem. 2012, 10, 4759.  doi: 10.1039/c2ob25271f

    65. [65]

      Dallanoce, C.; Canovi, M.; Matera, C.; Mennini, T.; De Amici, M.; Gobbi, M.; De Micheli, C. Bioorg. Med. Chem. 2012, 21, 6344.
       

    66. [66]

      Khazir, J.; Singh, P. P.; Reddy, D. M.; Hyder, L.; Shafi, S.; Sawant, S. D.; Chashoo, G.; Mahajan, A, ; Alam, M. S.; Saxena, A. K.; Arvinda, S.; Gupta, B. D.; Kumar. H. M. S. Eur. J. Med. Chem. 2013, 63, 279.  doi: 10.1016/j.ejmech.2013.01.003

    67. [67]

      Ryan, S. J.; Francis, C. L.; Savage, G. P. Aust. J. Chem. 2013, 66, 874.  doi: 10.1071/CH13270

    68. [68]

      Lian, X. -J.; Guo, S. -S.; Wang, G.; Lin, L. -L.; Liu, X. -H.; Feng, X. -M. J. Org. Chem. 2014, 79, 7703.  doi: 10.1021/jo5012625

    69. [69]

      Ryan, S. J.; Francis, C. L.; Savage, G. P. Aust. J. Chem. 2014, 67, 381.  doi: 10.1071/CH13444

    70. [70]

      Frank, É. ; Kovács, D.; Schneider, G.; Wölfling, J.; Bartók, T.; Zupkó, I. Mol. Diversity 2014, 18, 521.  doi: 10.1007/s11030-014-9516-8

    71. [71]

      Somsák, L.; Bokor, .; Czibere, B.; Czifrák, K.; Koppány, C.; Kulcsár, L.; Kun, S.; Szilágyi, E.; TóTth, M.; Docsa, T.; Gergely, P. Carbohydr. Res. 2014, 399, 38.  doi: 10.1016/j.carres.2014.05.020

    72. [72]

      Ledovskaya, M. S.; Stepakov, A. V.; Molchanov, A. P.; Kostikov, R. R. Tetrahedon 2015, 71, 7562.  doi: 10.1016/j.tet.2015.08.007

    73. [73]

      Sabolová, D.; Vilková, M.; Imrich, J.; Potocňák, L. Tertrahedron Lett. 2016, 57, 5592.  doi: 10.1016/j.tetlet.2016.10.108

    74. [74]

      Zaki, M.; Oukhrib, A.; Akssira, M.; Raboin, S. B. RSC Adv. 2017, 7, 6523.  doi: 10.1039/C6RA25869G

    75. [75]

      Chlenov, L. E.; Petrova, I. M.; Khasapov, B. N.; Karpenko, N, F.; Stepanyants, A. U.; Chizhov, O. S.; Tartakovskii, V. A. Russ. Chem. Bull. 1978, 27, 2278.  doi: 10.1007/BF00946676

    76. [76]

      Adamo, M. F. A.; Donati, D.; Duffy, E. F.; Sarti-Fantoni, P. J. Org. Chem. 2005, 70, 8395.  doi: 10.1021/jo051181w

    77. [77]

      Gao, M.; Li, Y.; Gan, Y.; Xu, B. Angew. Chem., Int. Ed. 2015, 54, 8795.  doi: 10.1002/anie.201503393

    78. [78]

      Tsukamoto, S.; Kato, H.; Hirota, H.; Fusetani, N. Tetrahedron 1996, 52, 8181.  doi: 10.1016/0040-4020(96)00387-0

    79. [79]

      Fisher, M. J. ; Jakubowski, J. A. ; Masters, J. J. ; Mullaney, J. T. ; Ruterbories, K. J. ; Paal, M. ; Ruhter, G. ; Schotten, T. ; Stenzel, W. ; Scarborough, R. M. WO 9711940, 1997[Chem. Abstr. 1997, 126, 317374].

    80. [80]

      Buschmann, H. H. ; Engelberger, G. W. ; German, T. ; Hennies, H. H. ; Maul, C. ; Sundermann, B. ; Holenz, J. WO 2003000699, 2003[Chem. Abstr. 2003, 138, 73251].

    81. [81]

      Wang, X. -Y.; Wang, Y. L.; Xu, W. R. Drug Eval. Res. 2012, 35, 42(in Chinese).

    82. [82]

      Chen, J.; Yao, C. Chin. J. New Drug 2009, 18, 307(in Chinese).  doi: 10.3321/j.issn:1003-3734.2009.04.009

    83. [83]

      Benltifa, M.; Hayes, J. M.; Vidal, S.; Gueyrard, D.; Goekjian, P. G.; Praly, J.; Kizilis, G.; Tiraidis, C.; Alexacou, K. M.; Chrysina, E. D.; Zographos, S. E.; Leonidas, D. D.; Archontis, G.; Oikonomakos, N. G. Bioorg. Med. Chem. 2009, 17, 7368.  doi: 10.1016/j.bmc.2009.08.060

    84. [84]

      Compagnone, R. S.; Avila, R.; Suárez, A. L.; Abrams, O. V.; Rangel, H. R.; Arvelo, F.; Pi, I. C.; Merentes, E. J. Nat. Prod. 1999, 62, 1443.  doi: 10.1021/np9901938

    85. [85]

      Baulard, A. R.; Betts, J. C.; Ndog, J. E.; Quan, S.; McAdam, R. A.; Brennan, P. J.; Locht, C.; Besra, G. S.; Baulard, A. R.; Betts, J. C.; Ndog, J. E.; Quan, S.; McAdam, R. A.; Brennan, P. J.; Locht, C.; Besra, G. S. J. Biol. Chem. 2000, 275, 28326.

    86. [86]

      Willand, N. ; Deprez, B. ; Baulard, A. ; Brodin, P. ; Desroses, M. F. ; Agouridas-Dutot, L. FR 3000064, 2014[Chem. Abstr. 2014, 161, 156175].

    87. [87]

      Meng, G. -X.; Qiu, J. X. J. China Pharm. 2004, 15, 76(in Chinese).  doi: 10.3969/j.issn.1001-0408.2004.02.007

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    5. [5]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    9. [9]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    14. [14]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    15. [15]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    16. [16]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    17. [17]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    18. [18]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

Metrics
  • PDF Downloads(13)
  • Abstract views(4660)
  • HTML views(321)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return