Synthesis and Biological Evaluation of Novel Substituted Chalcone-piperazine Derivatives

Hui Gao Xi Zheng Ping Zhu Si Wang Chunping Wan Gaoxiong Rao Zewei Mao

Citation:  Gao Hui, Zheng Xi, Zhu Ping, Wang Si, Wan Chunping, Rao Gaoxiong, Mao Zewei. Synthesis and Biological Evaluation of Novel Substituted Chalcone-piperazine Derivatives[J]. Chinese Journal of Organic Chemistry, 2018, 38(3): 684-691. doi: 10.6023/cjoc201707034 shu

新型取代查尔酮-哌嗪衍生物的合成及其生物活性评价

    通讯作者: 万春平, wanchunping1012@163.com
    毛泽伟, maozw@ynutcm.edu.cn
  • 基金项目:

    云南省应用基础研究 2014FZ078

    国家自然科学基金 81560620

    国家自然科学基金(Nos.81560620,81460624)、云南省应用基础研究(No.2014FZ078)和云南省科学技术厅-云南中医学院应用基础研究联合专项[No.2017FF117(-023)]资助项目

    国家自然科学基金 81460624

    云南省科学技术厅-云南中医学院应用基础研究联合专项 2017FF117(-023)

摘要: 为了寻找结构新颖的活性分子,采用活性亚结构拼接的方法,设计合成了24个未见文献报道的取代查尔酮-哌嗪衍生物,其结构经1H NMR、13C NMR和HRMS确证.分别采用小鼠巨噬细胞Raw 264.7炎症模型和噻唑蓝(MTT)法对目标化合物的体外抗炎活性和细胞毒活性进行测试,结果表明,查尔酮母核和哌嗪环上的取代基对化合物的生物活性有明显影响.特别是3,4,5-三甲氧基-4'-[N-(2-氧代丙基)-1-哌嗪基]查尔酮(11)能有效抑制NO的生成(IC50=3.81 μmol/L),4-溴-4'-[N-(4'-甲基-2-氧代苯乙基)-1-哌嗪基]查尔酮(25)对三种肿瘤细胞株(Hela,A549和sk-ov-3)均表现出良好的体外细胞毒活性(IC50值分别为0.54,0.05和9.12 μmol/L).

English

  • Chalcones, consisting of two aromatic rings through a three-carbon α, β-unsaturated carbonyl system, is an exceptional chemical template having important biological activities, including antitumor, anti-inflammatory, antioxidant, antimicrobial, anti-tubercular and antiplatelet properties.[1~5] The anti-inflammatory and anticancer activities of chalcones have been investigated extensively for more than several decades.[6~8]

    Moreover, there were some reports describing the possible mechanistic basis of the cytotoxic or anti-inflammatory activity. Chalcones exert anticancer activities through multiple mechanisms including cell cycle disruption, inhibition of angiogenesis, induction of apoptosis and tubulin polymerization.[9~11] In addition, chalcone derivatives show anti-inflammatory properties by inhibition of secretory phospholipase A2 and COX, proinflammatory cytokines production, and production of reactive oxygen species (ROS).[12~14]

    Literature on structure-activity relationship (SAR) analysis of chalcones highlights the employment of pronged strategies including structural modification of both aryl rings, replacement of aryl rings with heteroaryl scaffolds, and molecular hybridization through conjugation with other pharmacologically moieties. Recently, we have reported the synthesis of a series of novel hybrid compounds of chalcone and N-heterocycles and their potential anti-inflammatory and antitumor activities.[15] Especially, the hybrid compounds between chalcone and substituted piperazine displayed potential anti-tumor activities[16] (Figure 1).

    Figure 1

    Figure 1.  Synthetic biological chalcone compounds

    In order to keep in view of the biological importance of chalcone-piperazine hybrids, we were interested in synthesizing a number of novel chalcone derivatives bearing various substituted groups on aryl rings. Herein, we reported the synthesis of a series of novel substituted chalcone-piperazine compounds. The design strategy of new compounds was shown in Eq. 1. These derivatives were evaluated for their in vitro anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW-264.7 macrophages and anti-tumor activity against a panel of human tumor cell lines by methyl thiazolyl tetrazolium (MTT) assay, with the aim of developing new potential biological active agents. We also discussed the preliminary SAR of anti-inflammatory and anti-tumor activities.

    (1)

    The general synthetic route used to synthesize hybrid compounds is outlined in Scheme 1. Treatment of commercially substituted benzaldehyde with 4-fluoro acetophenone gave the chalcone compound 1 in the presence of 20% KOH in EtOH. Then, the key piperazine substituted chalcone intermediate 2 was prepared by substitution with piperazine from compound 1 in the presence of K2CO3 at 120 ℃ in N, N-dimetylformamide (DMF). Starting from desired intermediate 2, a series of substituted chalcone-piperazine hybrids were synthesized by treatment of compound 2 with a number of available α-bromoketone or α-bromo ethyl acetate. In order to compare the biological activities and get further discuss toward the structure and activity relationship (SAR), various tertiary amines 3~25 were prepared. Comparative data for new hybrid derivatives with respective to structures, melting point and yield were provided in Table 1. All of the synthesized compounds were characterized by 1H NMR, 13C NMR and HRMS analysis as well.

    Scheme 1

    Scheme 1.  Synthetic routes of chalcone-piperazine compounds

    Table 1

    Table 1.  Structures and yields of compounds
    下载: 导出CSV
    Compd. R R1 m.p.a/℃ Yieldb/%
    3   H Ethoxy 147~149 90
    4   H H3 168~170 82
    5   H Phenyl 177~179 76
    6   H 4-Fluorophenyl 186~188 69
    7   H 4-Chlorophenyl 196~198 73
    8   H 4-Bromophenyl 174~176 81
    9   H 4-Methylphenyl 172~174 78
    10 3, 4, 5-Trimethoxy Ethoxy 138~140 92
    11 3, 4, 5-Trimethoxy CH3 153~155 84
    12 3, 4, 5-Trimethoxy Phenyl 168~170 70
    13 3, 4, 5-Trimethoxy 4-Fluorophenyl 181~183 66
    14 3, 4, 5-Trimethoxy 4-Chlorophenyl 169~171 72
    15 3, 4, 5-Trimethoxy 4-Bromophenyl 153~155 83
    16 3, 4, 5-Trimethoxy 4-Methylphenyl 141~143 66
    17 3, 4, 5-Trimethoxy 4-Methoxyphenyl 132~134 84
    18 3, 4, 5-Trimethoxy 4-2-Naphthyl 177~179 60
    19 4-CH3 Ethoxy 141~143 85
    20 4-CH3 CH3 165~167 84
    21 4-CH3 Phenyl 173~175 65
    22 4-CH3 4-Methylphenyl 199~201 72
    23 4-Br Ethoxy 182~184 88
    24 4-Br CH3 204~206 83
    25 4-Br 4-Methylphenyl 180~182 76
    a Melting point was uncorrected. b Yields represented isolated yields.
    1.2.1   Anti-inflammatory activity

    In vitro anti-inflammatory activities of synthetic substituted chalcone-piperazine compounds were investigated in LPS-induced RAW 264.7 on the generation of NO.[17] The results of title compounds were summarized in Table 2. As shown in Table 2, the substituents of the core ring and the NH group of piperazine ring had an obvious influence on anti-inflammatory activities. To our delight, replacement of electron-donating group increased the anti-inflammatory activity (trimethoxy), and the substituents of NH group had an obvious influence against the generation of NO. On the whole, methyl ketone substituent contributed to better activity, but aryl ketone substituents led to weaker activity (CH3COCH2 > ArCOCH2). For example, compounds 4, 11, 12, 14 and 16 showed satisfied anti-inflammatory activity on the generation of NO (IC50 < 10 μmol/L). In addition, compounds 6, 13, 15, 17, 20 and 25 displayed potent anti-inflammatory activity (IC50 < 20 μmol/L). Among all synthetic compounds, hybrid 11 was found to be the most potent anti-inflammatory agent (IC50=3.81 μmol/L).

    Table 2

    Table 2.  Anti-inflammatory activities of compoundsa
    下载: 导出CSV
    Compd. IC50/(mol•L-1)
    3 > 50
    4 9.43
    5 32.07
    6 15.88
    7 25.58
    8 > 50
    9 > 50
    10 > 50
    11 3.81
    12 7.47
    13 18.30
    14 9.53
    15 16.38
    16 6.26
    17 19.25
    18 > 50
    19 > 50
    20 11.85
    21 36.04
    22 > 50
    23 > 50
    24 25.24
    25 13.80
    a Values represent the concentration required to produce 50% inhibition of the response
    1.2.2   Cytotoxic activity

    Cytotoxic activity of novel synthesized derivatives was evaluated against human lung cancer cell line A549, human cervical carcinoma Hela, human ovarian cancer cell line sk-ov-3 and human normal liver cell L02 by MTT assay, using cisplatin as the reference drug.[18] The anti-tumor results of hybrids were summarized in Table 3.

    Table 3

    Table 3.  In vitro cytotoxic activities [IC50/(μmol•L-1)] of title compoundsa
    下载: 导出CSV
    Compd. A549 Hela sk-ov-3 L02
    3 > 50 > 50 > 50 > 50
    4 > 50 > 50 > 50 > 50
    5 > 50 > 50 > 50 > 50
    6 > 50 14.13±1.22 12.07±1.28 > 50
    7 2.35±0.24 0.39±0.02 3.16±0.64 > 50
    8 0.18±0.03 > 50 19.74±1.72 > 50
    9 > 50 13.76±1.54 > 50 24.27±1.92
    10 > 50 > 50 > 50 > 50
    11 > 50 > 50 > 50 > 50
    12 > 50 8.14±1.16 > 50 > 50
    13 > 50 18.23±2.02 19.81±1.86 > 50
    14 > 50 0.45±0.04 0.92±0.20 28.08±3.02
    15 3.83±0.91 1.06±0.27 12.60±1.32 23.22±1.66
    16 > 50 0.06±0.01 34.62±3.85 > 50
    17 > 50 18.93±1.82 > 50 > 50
    18 > 50 > 50 > 50 > 50
    19 > 50 > 50 > 50 > 50
    20 > 50 > 50 > 50 > 50
    21 5.15±0.57 2.31±0.42 9.55±1.12 > 50
    22 > 50 > 50 > 50 > 50
    23 > 50 > 50 0.37±0.04 > 50
    24 12.36±0.98 1.74±0.34 5.52±0.66 3.82±0.44
    25 0.54±0.11 0.05±0.01 9.12±1.26 33.24±2.72
    Cisplatin 11.54±1.15 20.52±1.84 5.68±0.82 > 50
    a Cytotoxicity as IC50 values for each cell line, the concentration of compound that inhibit 50% of the cell growth measured by MTT assay.

    From the activity data, we could observed that the structures of compounds had an obvious influence on anticancer activities. There were four series of substituents of core benzene ring, including H, methyl, trimethoxy and Br. To explore the structure-activity relationships (SAR), various substituents (CH3COCH2, CH2CO2C2H5 and ArCOCH2) were introduced into the NH group. In generally, derivatives containing halide exhibited more sensitive to anticancer activities on three tested cancer cell lines. For example, compounds 6, 7, 8, 14, 15, 21, 24 and 25 showed selected anticancer activity against tumor cell lines. Among all synthesized derivatives, compound 8 displayed the best inhibitory activity for A549 (IC50=0.18 μmol/L), compound 25 showed the most potent cytotoxic activity against Hela (IC50=0.05 μmol/L) and compound 23 displayed the best antitumor activity for sk-ov-3 (IC50=0.37 μmol/L), respectively. Moreover, to compare the anticancer activity of cancer cells and normal cells, we evaluated the cytotoxic activity of compounds against human normal liver cell L02. According to the result, it is found that most hybrids were non-sensitive to L02. Compound 25 showed most cytotoxic activity (IC50=3.82 μmol/L), and compounds 9, 14 and 15 had weak inhibitory activity for L02 (IC50 < 30 μmol/L).

    The biological results suggested that existence of substituents played an important role in the anti-inflammatory and cytotoxic activity of compounds. On one hand, electron-donating groups of phenyl ring had better inhibitory effect on the generation of NO, and 4-Br substituent exhibited more potent cytotoxic activity. On the other hand, the substituents of the NH group of piperazine ring also had an obvious influence on biological activities. Especially, CH3COCH2 group contributed better anti-inflammatory activity, and ArCOCH2 led to potent anticancer activity. On the whole, the compounds bearing 4-Br (R) and Ar (R1) led to better anticancer activity, and the compounds bearing R (trimethoxy) and methyl (R1) contributed to better anti-inflammatory activity. The structure-activity relationship (SAR) results were summarized in Figure 2.

    Figure 2

    Figure 2.  Structure-activity relationship of title compounds

    In summary, a series of novel substituted chalcone-piperazine derivatives have been synthesized and screened in vitro anti-inflammatory and cytotoxic activity. The results demonstrated that the substituents of the core ring and the NH group of piperazine ring had an obvious influence on biological activities. Especially, derivative 11 showed better inhibitory effect on the generation of NO (IC50=3.81 μmol/L), and compound 25 displayed good cytotoxic activity against A549 and Hela (IC50=0.54 and 0.05 μmol/L, respectively), which was considered as the most potent active agents. Further research is currently undergoing and the results will be reported in due course.

    Starting materials were analytically pure. Melting points were measured on a YANACO microscopic melting point meter and were uncorrected. 1H NMR and 13C NMR spectra were recorded on a Bruker AV 400 spectrometer (Bruker, Switzerland), using TMS as internal standard and CDCl3 as solvent, respectively. Thin layer chromatographic (TLC) analysis was carried out on silica gel plates GF254. High-resolution mass spectra were performed on an ESI Q-TOF MS spectrometer (Agilent, America).

    3.2.1   General procedure for the synthesis of compounds 1a~1d

    To a solution of EtOH (20 mL), ArCHO (10 mmol) and 4-fluoroacetophenone (1.38 g, 10 mmol), was added 20% KOH (15 mL), and the mixture was left to react at room temperature overnight. The reaction was quenched by the addition of water (30 mL), the mixture was filtrated and the solid was dried to afford products. The characterization data of compounds 1a~1d was the same to References [19~21].

    3.2.2   General procedure for the preparation of compounds 2a~2d

    To a stirred solution of the compound 1 (10 mmol) and K2CO3 (2.76 g, 20 mmol) in dried N, N-dimethylformamide (DMF) (30 mL), piperazine (1.72 g, 20 mmol) was added and reaction mixture was stirred for 12 h at 120 ℃. After completion of the reaction as indicated by thin-layer chromatography (TLC), the reaction solution was cooled and quenched by the addition of dichloromethane (DCM) (50 mL). The organic layer was washed with water (20 mL×3) and dried by anhydrous sodium sulfate, concentrated in vacuo and purified by column chromatography to afford compounds.

    3.2.3   General procedure for the preparation of hybrid derivatives 3~25

    To a stirred solution of compound 2 (0.1 g) and K2CO3 (0.2 g) in dried DCM (10 mL), RX (1 mmol) was added and the reaction mixture was stirred for 5~24 h at room temperature. After completion of the reaction as indicated by TLC, the reaction was quenched by the addition of 5% NaOH (20 mL) and was extracted with DCM (10 mL×3). The organic layer was dried using anhydrous sodium sulfate, concentrated in vacuo and purified by column chromatography (1% MeOH/DCM) to afford title products.

    4'-(1-Piperazinyl)chalcone (2a): Pale yellow solid, m.p. 151~153 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.02 (d, J=8.9 Hz, 2H), 7.86 (dd, J=3.2, 2.2 Hz, 1H), 7.83 (d, J=15.6 Hz, 1H), 7.66 (d, J=8.0 Hz, 2H), 7.60 (d, J=15.6 Hz, 1H), 7.42 (d, J=8.9 Hz, 2H), 6.93 (d, J=9.0 Hz, 2H), 3.33~3.35 (m, 4H), 3.01~3.03 (m, 4H), 2.11 (s, 1H); 13C NMR (100 MHz, CDCl3) δ: 188.1, 154.5, 154.1, 143.1, 135.4, 130.7, 130.2, 130.1, 128.9, 128.3, 122.1, 113.5, 50.1, 48.4, 45.8; HRMS (ESI-TOF) calcd for C19H21N2O (M+H)+ 293.1648, found 293.1648.

    4-Methyl-4'-(1-piperazinyl)chalcone (2b): Yellow solid, m.p. 159~161 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.99 (dd, J=2.0, 7.1 Hz, 2H), 7.77 (d, J=15.6 Hz, 1H), 7.50~7.54 (m, 3H), 7.20 (d, J=8.0 Hz, 2H), 6.90 (dd, J=1.9, 7.2 Hz, 2H), 3.32 (t, J=5.0 Hz, 4H), 3.02 (t, J=5.2 Hz, 4H), 2.38 (s, 3H), 1.73 (s, 1H); 13C NMR (100 MHz, CDCl3) δ: 188.3, 154.6, 143.3, 140.6, 132.7, 130.7, 129.7, 128.5, 128.4, 121.1, 113.6, 48.6, 46.0, 21.6; HRMS (ESI-TOF) calcd for C20H23N2O (M+H)+ 307.1805, found 307.1806.

    3, 4, 5-Trimethoxy-4'-(1-piperazinyl)chalcone (2c): Yellow solid, m.p. 162~164 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.98 (d, J=8.8 Hz, 2H), 7.69 (d, J=15.5 Hz, 1H), 7.42 (d, J=15.5 Hz, 1H), 6.91 (d, J=8.7 Hz, 2H), 6.85 (s, 2H), 3.91 (s, 9H), 3.90 (s, 3H), 3.89 (s, 3H), 3.34 (t, J=4.8 Hz, 4H), 3.03 (t, J=5.2 Hz, 4H), 2.02 (s, 1H); 13C NMR (100 MHz, CDCl3) δ: 188.1, 154.6, 153.6, 143.4, 131.0, 130.8, 128.4, 121.5, 113.6, 105.7, 61.1, 56.3, 48.5, 45.9; HRMS (ESI-TOF) calcd for C22H27N2O4 (M+H)+383.1965, found 383.1962.

    4-Bromo-4'-(1-piperazinyl)chalcone (2d): Pale yellow solid, m.p. 187~189 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.98 (dd, J=1.9, 7.1 Hz, 2H), 7.69 (d, J=15.6 Hz, 1H), 7.46~7.55 (m, 5H), 6.89 (d, J=9.0 Hz, 2H), 3.33 (t, J=5.0 Hz, 4H), 3.01 (t, J=5.1 Hz, 4H), 1.83 (s, 1H); 13C NMR (100 MHz, CDCl3) δ: 187.7, 154.6, 141.7, 134.4, 132.2, 130.8, 129.7, 128.0, 124.3, 122.7, 113.6, 113.5, 113.4, 48.4, 45.9; HRMS (ESI-TOF) calcd for C19H20BrN2O (M+H)+371.0754, found 371.0754.

    4'-[N-(2-Oxo-2-ethoxyethyl)-1-piperazinyl]chalcone (3): 1H NMR (400 MHz, CDCl3) δ: 7.99 (d, J=8.6 Hz, 2H), 7.78 (d, J=15.6 Hz, 1H), 7.63 (dd, J=1.6, 7.3 Hz, 2H), 7.55 (d, J=15.6 Hz, 1H), 7.39 (d, J=6.4 Hz, 3H), 6.90 (d, J=8.8 Hz, 2H), 4.23 (q, J=7.1 Hz, 2H), 3.43 (t, J=4.6 Hz, 4H), 3.27 (s, 2H), 2.74 (t, J=4.7 Hz, 4H), 1.28 (t, J=7.1 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 188.1, 170.1, 154.1, 143.2, 135.4, 130.8, 130.2, 129.0, 128.5, 128.4, 122.2, 113.7, 60.9, 59.4, 52.7, 47.3, 14.4; HRMS (ESI-TOF) calcd for C23H27N2O3 (M+H)+ 379.2013, found 379.2016.

    4'-[N-(2-Oxopropyl)-1-piperazinyl]chalcone (4): 1H NMR (400 MHz, CDCl3) δ: 7.98 (d, J=8.8 Hz, 2H), 7.78 (d, J=15.6 Hz, 1H), 7.63 (dd, J=2.2 Hz, 7.8 Hz, 2H), 7.55 (d, J=15.6 Hz, 1H), 7.39 (d, J=6.4 Hz, 3H), 6.90 (d, J=8.9 Hz, 2H), 3.42 (t, J=4.9 Hz, 4H), 3.27 (s, 2H), 2.65 (t, J=5.0 Hz, 4H), 1.27 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 206.0, 188.2, 154.1, 143.3, 135.4, 130.8, 130.2, 129.0, 128.5, 128.4, 122.1, 113.7, 68.0, 53.0, 47.2, 27.9; HRMS (ESI-TOF) calcd for C22H25N2O2 (M+H)+ 349.1911, found 349.1912.

    4'-[N-(2-Oxophenylethyl)-1-piperazinyl]chalcone (5): 1H NMR (400 MHz, CDCl3) δ: 7.99~8.03 (m, 4H), 7.79 (d, J=15.6 Hz, 1H), 7.64 (dd, J=2.2, 7.7 Hz, 2H), 7.54~7.59 (m, 2H), 7.47 (t, J=7.9 Hz, 2H), 7.99~8.03 (m, 4H), 7.39~7.41 (m, 3H), 6.92 (d, J=9.1 Hz, 2H), 3.90 (s, 2H), 3.47 (t, J=5.0 Hz, 4H), 2.78 (t, J=5.1 Hz, 4H); 13C NMR (100 MHz, CDCl3) δ: 196.2, 188.2, 154.2, 143.3, 136.1, 135.5, 133.6, 130.8, 130.2, 129.0, 128.8, 128.5, 128.4, 128.2, 122.2, 113.7, 64.4, 53.2, 47.4; HRMS (ESI-TOF) calcd for C27H27N2O2 (M+H)+ 411.2068, found 411.2067.

    4'-[N-(4'-Fluoro-2-oxophenylethyl)-1-piperazinyl]chalk-one (6): 1H NMR (400 MHz, CDCl3) δ: 8.04~8.08 (dd, J=5.4, 9.0 Hz, 2H), 7.99 (d, J=9.0 Hz, 2H), 7.78 (d, J=15.6 Hz, 1H), 7.63 (dd, J=2.2, 7.6 Hz, 2H), 7.55 (d, J=15.6 Hz, 1H), 7.38~7.40 (m, 3H), 7.13 (t, J=8.7 Hz, 2H), 6.91 (d, J=9.1 Hz, 2H), 3.84 (s, 2H), 3.44 (t, J=5.0 Hz, 4H), 2.75 (t, J=5.1 Hz, 4H); 13C NMR (100 MHz, CDCl3) δ: 194.7, 188.2, 167.3, 164.7, 154.1, 143.3, 135.4, 132.4, 131.1, 131.0, 130.2, 129.0, 128.5, 128.4, 122.1, 116.0, 115.8, 113.7, 64.4, 53.2, 47.3; HRMS (ESI-TOF) calcd for C27H26N2O2F (M+H)+ 429.1973, found 429.1971.

    4'-[N-(4'-Chloro-2-oxophenylethyl)-1-piperazinyl]chalcone (7): 1H NMR (400 MHz, CDCl3) δ: 7.94~7.99 (m, 4H), 7.77 (d, J=15.6 Hz, 1H), 7.62 (dd, J=1.5, 7.2 Hz, 2H), 7.54 (d, J=15.6 Hz, 1H), 7.37~7.43 (m, 5H), 6.89 (d, J=8.9 Hz, 2H), 3.82 (s, 2H), 3.41 (t, J=4.3 Hz, 4H), 2.73 (t, J=4.2 Hz, 4H); 13C NMR (100 MHz, CDCl3) δ: 195.1, 188.1, 154.1, 143.3, 140.0, 135.4, 134.2, 130.8, 130.2, 129.8, 129.0, 129.0, 128.5, 128.4, 122.1, 113.7, 64.4, 53.1, 47.3; HRMS (ESI-TOF) calcd for C27H26ClN2O2 (M+H)+ 445.1677, found 445.1678.

    4'-[N-(4'-Bromo-2-oxophenylethyl)-1-piperazinyl]chal-cone (8): 1H NMR (400 MHz, CDCl3) δ: 7.99 (d, J=8.9 Hz, 2H), 7.88 (d, J=8.6 Hz, 2H), 7.78 (d, J=15.6 Hz, 1H), 7.54~7.64 (m, 5H), 7.37~7.41 (m, 3H), 6.90 (d, J=9.0 Hz, 2H), 3.83 (s, 2H), 3.44 (t, J=4.8 Hz, 4H), 2.75 (t, J=5.0 Hz, 4H); 13C NMR (100 MHz, CDCl3) δ: 195.3, 188.1, 154.1, 143.3, 135.4, 134.6, 132.0, 130.8, 130.2, 129.9, 129.0, 128.7, 128.5, 128.4, 122.1, 113.7, 64.4, 53.1, 47.3; HRMS (ESI-TOF) calcd for C27H25BrN2O2Na (M+Na)+ 511.0992, found 511.0996.

    4'-[N-(4'-Methyl-2-oxophenylethyl)-1-piperazinyl]chal-cone (9): 1H NMR (400 MHz, CDCl3) δ: 8.00 (d, J=9.0 Hz, 2H), 7.91 (d, J=8.2 Hz, 2H), 7.79 (d, J=15.6 Hz, 1H), 7.64 (dd, J=2.2, 7.8 Hz, 2H), 7.56 (d, J=15.6 Hz, 1H), 7.39~7.41 (m, 3H), 7.26 (d, J=8.0 Hz, 2H), 6.92 (d, J=9.0 Hz, 2H), 3.86 (s, 2H), 3.46 (t, J=4.9 Hz, 4H), 2.77 (t, J=5.0 Hz, 4H), 2.41 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 195.8, 188.2, 154.2, 144.4, 143.2, 135.5, 133.6, 130.8, 130.2, 129.4, 129.0, 128.4, 128.4, 128.3, 122.2, 113.7, 64.2, 53.2, 47.3, 21.8; HRMS (ESI-TOF) calcd for C28H29N2O2 (M+H)+ 425.2220, found 425.2224.

    3, 4, 5-Trimethoxy-4'-[N-(2-oxo-2-ethoxyethyl)-1-pipera-zinyl]chalcone (10): 1H NMR (400 MHz, CDCl3) δ: 7.96 (d, J=8.2 Hz, 2H), 7.66 (d, J=15.5 Hz, 1H), 7.41 (d, J=15.5 Hz, 1H), 6.88 (d, J=8.5 Hz, 2H), 6.84 (d, J=5.3 Hz, 2H), 4.20 (q, J=7.0 Hz, 2H), 3.90 (s, 3H), 3.88 (s, 3H), 3.86 (s, 3H), 3.40 (t, J=4.4 Hz, 4H), 3.25 (d, J=5.6 Hz, 2H), 2.72 (t, J=4.6 Hz, 4H), 1.26 (t, J=6.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 188.0, 170.1, 154.0, 153.5, 143.32, 140.1, 130.9, 130.7, 128.4, 121.5, 113.6, 105.6, 61.0, 60.8, 59.3, 56.3, 52.6, 47.3, 14.3; HRMS (ESI-TOF) calcd for C26H33N2O6 (M+H)+ 469.2333, found 469.2332.

    3, 4, 5-Trimethoxy-4'-[N-(2-oxopropyl)-1-piperazinyl]chalcone (11): 1H NMR (400 MHz, CDCl3) δ: 7.98 (d, J=8.6 Hz, 2H), 7.69 (d, J=15.5 Hz, 1H), 7.42 (d, J=15.5 Hz, 1H), 6.90 (d, J=8.7 Hz, 2H), 6.85 (s, 2H), 3.89 (s, 6H), 3.88 (s, 3H), 3.42 (t, J=4.8 Hz, 4H), 3.27 (s, 2H), 2.65 (t, J=4.7 Hz, 4H), 1.27 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 206.0, 188.1, 154.1, 153.6, 143.5, 131.0, 130.8, 128.5, 121.5, 113.7, 105.7, 68.0, 61.1, 56.35, 53.1, 47.3, 27.9; HRMS (ESI-TOF) calcd for C25H31N2O5 (M+H)+ 439.2226, found 439.2227.

    3, 4, 5-Trimethoxy-4'-[N-(2-oxophenylethyl)-1-pipera-zinyl]chalcone (12): 1H NMR (400 MHz, CDCl3) δ: 7.97~8.00 (m, 4H), 7.69 (d, J=15.5 Hz, 1H), 7.55~7.59 (m, 1H), 7.41~7.47 (m, 3H), 6.90 (d, J=9.0 Hz, 2H), 6.85 (s, 2H), 3.89 (s, 3H), 3.88 (s, 3H), 3.87 (s, 3H), 3.45 (t, J=5.0 Hz, 4H), 2.77 (t, J=5.0 Hz, 4H); 13C NMR (100 MHz, CDCl3) δ: 196.1, 188.1, 154.1, 153.5, 143.4, 136.0, 133.5, 130.9, 130.7, 128.7, 128.4, 128.2, 122.5, 113.7, 105.6, 64.2, 61.0, 56.3, 53.2, 47.3; HRMS (ESI-TOF) calcd for C30H33N2O5 (M+H)+ 501.2384, found 501.2380.

    3, 4, 5-Trimethoxy-4'-[N-(4'-fluoro-2-oxophenylethyl)-1-piperazinyl]chalcone (13): 1H NMR (400 MHz, CDCl3) δ: 8.04~8.08 (m, 2H), 8.00 (d, J=8.9 Hz, 2H), 7.70 (d, J=15.5 Hz, 1H), 7.45 (d, J=15.5 Hz, 1H), 7.13 (t, J=8.6 Hz, 2H), 6.91 (d, J=8.9 Hz, 2H), 6.86 (s, 2H), 3.92 (s, 3H), 3.90 (s, 3H), 3.89 (s, 3H), 3.85 (s, 2H), 3.43 (t, J=4.4 Hz, 4H), 2.76 (t, J=4.7 Hz, 4H); 13C NMR (100 MHz, CDCl3) δ: 194.6, 188.0, 167.1, 164.6, 154.0, 153.5, 143.3, 140.1, 132.3, 131.0, 130.9, 130.8, 130.7, 128.4, 121.4, 115.9, 115.6, 113.6, 105.6, 64.3, 61.0, 56.2, 53.0, 47.2; HRMS (ESI-TOF) calcd for C30H32FN2O5 (M+H)+ 519.2290, found 519.2285.

    3, 4, 5-Trimethoxy-4'-[N-(4'-chloro-2-oxophenylethyl)-1-piperazinyl]chalcone (14): 1H NMR (400 MHz, CDCl3) δ: 7.92~7.98 (m, 4H), 7.67 (d, J=15.5 Hz, 1H), 7.39~7.44 (m, 3H), 6.88 (d, J=9.0 Hz, 2H), 6.83 (s, 2H), 3.89 (s, 3H), 3.88 (s, 3H), 3.86 (s, 3H), 3.81 (s, 2H), 3.41 (t, J=4.8 Hz, 4H), 2.72 (t, J=5.0 Hz, 4H); 13C NMR (100 MHz, CDCl3) δ: 195.1, 188.0, 154.0, 153.5, 143.4, 139.9, 134.2, 130.8, 130.7, 129.7, 129.0, 128.4, 121.4, 113.6, 105.6, 64.3, 61.0, 56.3, 53.1, 47.2; HRMS (ESI-TOF) calcd for C30H32N2O5Cl (M+H)+ 535.1991, found 535.1994.

    3, 4, 5-Trimethoxy-4'-[N-(4'-bromo-2-oxophenylethyl)-1-piperazinyl]chalcone (15): 1H NMR (400 MHz, CDCl3) δ: 7.98 (d, J=8.7 Hz, 2H), 7.88 (d, J=8.2 Hz, 2H), 7.68 (d, J=15.5 Hz, 1H), 7.59 (d, J=8.2 Hz, 2H), 7.42 (d, J=15.5 Hz, 2H), 6.90 (d, J=8.8 Hz, 2H), 6.85 (s, 2H), 3.89 (s, 6H), 3.88 (s, 3H), 3.83 (s, 2H), 3.43 (t, J=4.8 Hz, 4H), 2.75 (t, J=4.6 Hz, 4H); 13C NMR (100 MHz, CDCl3) δ: 195.3, 188.1, 154.1, 153.6, 143.5, 134.6, 132.1, 130.9, 130.8, 129.8, 128.8, 128.6, 121.5, 113.7, 105.7, 64.4, 61.1, 56.3, 53.1, 47.3; HRMS (ESI-TOF) calcd for C30H31N2O2BrNa (M+Na)+ 601.1309, found 601.1304.

    3, 4, 5-Trimethoxy-4'-[N-(4'-methyl-2-oxophenylethyl)-1-piperazinyl]chalcone (16): 1H NMR (400 MHz, CDCl3) δ: 8.00 (d, J=9.0 Hz, 2H), 7.91 (d, J=8.2 Hz, 2H), 7.70 (d, J=15.6 Hz, 1H), 7.43 (d, J=15.6 Hz, 1H), 7.27 (t, J=3.7 Hz, 2H), 6.93 (d, J=9.0 Hz, 2H), 6.86 (s, 2H), 3.92 (s, 6H), 3.90 (s, 3H), 3.88 (s, 2H), 3.45~3.48 (m, 4H), 2.77~2.79 (m, 4H), 2.41 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 195.8, 188.2, 154.2, 153.6, 144.4, 143.4, 133.6, 131.0, 130.8, 129.4, 128.5, 128.3, 121.6, 113.7, 105.7, 64.2, 61.1, 56.4, 53.2, 47.4, 21.8; HRMS (ESI-TOF) calcd for C31H35N2O5 (M+H)+ 515.2540, found 515.2540.

    3, 4, 5-Trimethoxy-4'-[N-(4'-methoxy-2-oxophenyl-ethyl)-1-piperazinyl]chalcone (17): 1H NMR (400 MHz, CDCl3) δ: 7.99~8.04 (m, 4H), 7.72 (dd, J=5.1, 15.5 Hz, 1H), 7.43 (dd, J=4.0, 15.6 Hz, 1H), 6.90~6.96 (m, 4H), 6.87 (s, 2H), 3.92 (s, 6H), 3.90 (s, 3H), 3.88 (s, 1H), 3.87 (s, 2H), 3.85 (s, 1H), 3.79 (d, J=5.0 Hz, 1H), 3.72 (d, J=3.2 Hz, 1H), 3.55 (t, J=4.8 Hz, 1H), 3.47 (t, J=4.8 Hz, 2H), 3.35~3.42 (m, 2H), 2.81 (t, J=5.1 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 194.5, 188.2, 163.9, 161.0, 154.1, 153.5, 143.5, 132.2, 130.8, 130.5, 121.5, 114.6, 113.9, 113.7, 105.8, 105.7, 63.9, 61.1, 56.3, 55.6, 55.5, 53.1, 47.2; HRMS (ESI-TOF) calcd for C31H35N2O6 (M+H)+ 531.2490, found 531.2490.

    3, 4, 5-Trimethoxy-4'-[N-(2-oxo-β-naphthalenylethyl)-1-piperazinyl]chalcone (18): 1H NMR (400 MHz, CDCl3) δ: 8.53 (s, 1H), 7.93~8.04 (m, 4H), 7.86 (t, J=8.8 Hz, 2H), 7.69 (d, J=15.5 Hz, 1H), 7.53~7.60 (m, 2H), 7.43 (d, J=15.5 Hz, 1H), 6.90 (d, J=9.0 Hz, 2H), 6.84 (s, 2H), 4.04 (s, 2H), 3.89 (s, 3H), 3.88 (s, 3H), 3.87 (s, 3H), 3.46 (t, J=4.2 Hz, 4H), 2.80 (t, J=4.8 Hz, 4H); 13C NMR (100 MHz, CDCl3) δ: 196.0, 188.1, 154.1, 153.5, 143.3, 140.1, 135.8, 133.3, 132.5, 130.9, 130.7, 129.8, 129.6, 128.7, 128.6, 128.4, 127.9, 126.9, 123.8, 121.5, 113.6, 105.6, 64.3, 61.0, 56.3, 53.2, 47.3; HRMS (ESI-TOF) calcd for C34H35N2O5 (M+H)+ 551.2537, found 551.2540.

    4-Methyl-4'-[N-(2-oxo-2-ethoxyethyl)-1-piperazinyl]-chalcone (19): 1H NMR (400 MHz, CDCl3) δ: 7.98 (d, J=8.9 Hz, 2H), 7.75 (d, J=15.6 Hz, 1H), 7.49~7.53 (m, 3H), 7.19 (d, J=8.0 Hz, 2H), 6.89 (d, J=8.9 Hz, 2H), 4.22 (q, J=7.1 Hz, 2H), 3.41 (t, J=4.9 Hz, 4H), 3.26 (s, 2H), 2.73 (t, J=5.0 Hz, 4H), 2.37 (s, 3H), 1.27 (t, J=7.1 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 188.2, 170.1, 154.0, 143.3, 140.6, 132.6, 130.7, 129.7, 128.6, 128.4, 121.1, 113.7, 60.8, 59.4, 52.6, 47.3, 21.6, 14.3; HRMS (ESI-TOF) calcd for C24H28N2O3Na (M+Na)+ 415.1992, found 415.1996.

    4-Methyl-4'-[N-(2-oxopropyl)-1-piperazinyl]chal-cone (20): 1H NMR (400 MHz, CDCl3) δ: 7.97 (d, J=8.9 Hz, 2H), 7.75 (d, J=15.6 Hz, 1H), 7.48~7.52 (m, 3H), 7.18 (d, J=7.9 Hz, 2H), 6.88 (d, J=9.0 Hz, 2H), 3.39 (t, J=4.8 Hz, 4H), 3.24 (s, 2H), 2.62 (t, J=5.0 Hz, 4H), 2.35 (s, 3H), 2.15 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 206.0, 188.2, 154.0, 143.3, 140.6, 132.6, 130.7, 129.7, 128.5, 128.3, 121.1, 113.6, 67.9, 53.0, 47.2, 27.8, 21.5; HRMS (ESI-TOF) calcd for C23H27N2O2 (M+H)+ 385.1884, found 385.1886.

    4-Methyl-4'-[N-(2-oxophenylethyl)-1-piperazinyl]chal-cone (21): 1H NMR (400 MHz, CDCl3) δ: 7.98~8.02 (m, 4H), 7.79 (d, J=15.6 Hz, 1H), 7.45~7.58 (m, 6H), 7.22 (d, J=8.0 Hz, 2H), 6.93 (d, J=9.0 Hz, 2H), 3.90 (s, 2H), 3.48 (t, J=5.2 Hz, 4H), 2.80 (t, J=5.0 Hz, 4H), 2.38 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 196.2, 188.3, 154.1, 143.4, 140.6, 136.1, 133.5, 132.7, 130.7, 129.7, 128.8, 128.7, 128.4, 128.2, 121.2, 113.8, 64.3, 53.2, 47.4, 21.6; HRMS (ESI-TOF) calcd for C28H29N2O2 (M+H)+ 425.2224, found 425.2227.

    4-Methyl-4'-[N-(4'-methyl-2-oxophenylethyl)-1-pi-perazinyl]chalcone (22): 1H NMR (400 MHz, CDCl3) δ: 8.00 (d, J=7.7 Hz, 1H), 7.90 (dd, J=2.2, 6.5 Hz, 3H), 7.77 (d, J=15.6 Hz, 1H), 7.54 (t, J=2.2 Hz, 2H), 7.31 (d, J=11.6 Hz, 1H), 7.20~7.27 (m, 4H), 7.03 (d, J=7.5 Hz, 1H), 6.91 (d, J=7.9 Hz, 1H), 6.82 (t, J=7.4 Hz, 1H), 3.87 (d, J=7.0 Hz, 2H), 3.41~3.47 (m, 4H), 2.74~2.79 (m, 4H), 2.41 (s, 3H), 2.38 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 195.8, 188.4, 154.1, 144.4, 143.4, 140.6, 137.5, 133.6, 132.7, 131.3, 130.8, 129.7, 129.5, 129.4, 129.1, 128.7, 128.4, 128.4, 126.6, 121.2, 113.7, 113.6, 64.2, 53.2, 53.2, 47.4, 47.2, 21.8, 21.6; HRMS (ESI-TOF) calcd for C29H31N2O2 (M+H)+ 439.2378, found 439.2380.

    4-Bromo-4'-[N-(2-oxo-2-ethoxyethyl)-1-piperazinyl]-chalcone (23): 1H NMR (400 MHz, CDCl3) δ: 7.95 (d, J=9.0 Hz, 2H), 7.67 (d, J=15.6 Hz, 1H), 7.44~7.53 (m, 5H), 6.87 (d, J=9.1 Hz, 2H), 4.20 (q, J=7.1 Hz, 2H), 3.40 (t, J=4.9 Hz, 4H), 3.25 (s, 2H), 2.71 (t, J=5.0 Hz, 4H), 1.26 (t, J=7.1 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 187.6, 170.1, 154.1, 141.6, 134.3, 132.1, 130.7, 129.7, 128.1, 124.2, 122.6, 113.6, 60.8, 59.3, 52.55, 47.2, 14.3; HRMS (ESI-TOF) calcd for C23H26N2O3Br (M+H)+ 457.1121, found 457.1121.

    4-Bromo-4'-[N-(2-oxopropyl)-1-piperazinyl]chalcone-(24): 1H NMR (400 MHz, CDCl3) δ: 7.96 (d, J=8.8 Hz, 2H), 7.69 (d, J=15.6 Hz, 1H), 7.46~7.54 (m, 5H), 6.88 (d, J=8.9 Hz, 2H), 3.42 (t, J=5.0 Hz, 4H), 3.26 (s, 2H), 2.64 (t, J=5.0 Hz, 4H), 2.17 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 206.0, 187.7, 154.2, 141.7, 134.3, 132.2, 130.8, 129.9, 128.2, 124.3, 122.7, 113.6, 68.0, 53.0, 47.2, 27.9; HRMS (ESI-TOF) calcd for C22H24N2O2Br (M+H)+ 427.1016, found 427.1016.

    4-Bromo-4'-[N-(4'-methyl-2-oxophenylethyl)-1-pipera-zinyl]chalcone (25): 1H NMR (400 MHz, CDCl3) δ: 7.98 (dd, J=2.6, 8.8 Hz, 2H), 7.90 (d, J=5.3 Hz, 2H), 7.72 (dd, J=2.6, 15.6 Hz, 1H), 7.50~7.56 (m, 4H), 7.25~7.33 (m, 4H), 6.92 (dd, J=2.5, 8.9 Hz, 1H), 3.87 (d, J=2.6 Hz, 2H), 3.47 (s, 4H), 2.78 (s, 3H), 2.41 (s, 4H); 13C NMR (100 MHz, CDCl3) δ: 195.8, 187.9, 154.3, 144.5, 141.8, 134.5, 133.6, 132.2, 131.5, 131.0, 130.9, 130.0, 129.8, 129.5, 128.6, 128.4, 128.3, 122.8, 113.7, 64.2, 53.2, 47.3, 21.8; HRMS (ESI-TOF) calcd for C28H28N2O2Br (M+H)+ 503.1329, found 503.1326.

    4.3.1   Anti-inflammatory activity

    Murine RAW264.7 macrophages were plated in 96 well plate at a density of 1×105 cells/well and stimulated with 1 μg/mL lipopolysaccharides (LPS) in the present or absence of various concentration of compound for 24 h. The production of NO was determined by assaying culture supernatant for NO2-. 100 μL of supernatant was mixed with an equal volume of Griess reagent at room temperature for 10 min. Absorbance was measured at 540 nm in a microplate reader.

    4.3.2   Cytotoxic activity

    The assay was carried out using the method previously described. About 1×104 cell/well were seeded into 96-well microtiter plates. After 24 h post-seeding, cells were treated with vehicle control or various concentrations of samples for 48 h. 20 μL of MTT solution (5 mg/mL) was added to each well and the tumor cells were incubated at 37 ℃ in a humidified atmosphere of 5% CO2 air for 4 h. Upon removal of MTT/medium, 150 μL of dimethylsulfoxide (DMSO) was added to each well and the plate was agitated at oscillator for 5 min to dissolve the MTT-formazan. The assay plate was read at a wavelength of 570 nm using a microplate reader.

    Supporting Information The 1H NMR, 13C NMR and HRMS spectra of compounds. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn.

    1. [1]

      Go, M. L.; Wu, X.; Liu, X. L. Curr. Med. Chem. 2005, 12, 481. http://europepmc.org/abstract/med/15720256

    2. [2]

      Ducki, S. Anti-Cancer Agents Med. Chem. 2009, 9, 336. doi: 10.2174/1871520610909030336

    3. [3]

      Kamal, A.; Ramakrishna, G.; Raju, P.; Viswanath, A.; Ramaiah, M. J.; Balakishan, G.; Pal-Bhadra, M. Bioorg. Med. Chem. Lett. 2010, 20, 4865. doi: 10.1016/j.bmcl.2010.06.097

    4. [4]

      Atilaw, Y.; Duffy, S.; Heydenreich, M.; Muiva-Mutisya, L.; Avery, V. M.; Erdélyi, M.; Yenesew, A. Molecules 2017, 22, 318. doi: 10.3390/molecules22020318

    5. [5]

      Kucerova-Chlupacova, M.; Vyskovska-Tyllova, V.; Richterova-Finkova, L.; Kunes, J.; Buchta, V.; Vejsova, M.; Paterova, P.; Semelkova, L.; Jandourek, O.; Opletalova, V. Molecules 2016, 21, 1421. doi: 10.3390/molecules21111421

    6. [6]

      Singh, P.; Anand, A.; Kumar, V. Eur. J. Med. Chem. 2014, 85, 758. doi: 10.1016/j.ejmech.2014.08.033

    7. [7]

      Ritter, M.; Martins, R. M.; Dias, D.; Pereira, C. M. P. Lett. Org. Chem. 2014, 11, 498. doi: 10.2174/1570178611666140218004421

    8. [8]

      Burmaoglu, S.; Algul, O.; Anıl, D. A.; Gobek, A.; Duran, G. G.; Ersan, R. H.; Duran, N. Bioorg. Med. Chem. Lett. 2016, 26, 3172. doi: 10.1016/j.bmcl.2016.04.096

    9. [9]

      宰文静, 蒋盼盼, 张新迎, Philippe M. Loiseau, 郭胜海, 范学森, 有机化学, 2015, 35, 1335. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yjhu201506017&dbname=CJFD&dbcode=CJFQZai, W. J.; Jiang, P. P.; Zhang, X. Y.; Loiseau, P. M.; Guo, S. H.; Fan, X. S. Chin. J. Org. Chem. 2015, 35, 1335 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yjhu201506017&dbname=CJFD&dbcode=CJFQ

    10. [10]

      Srinivasan, B.; Johnson, T. E.; Lad, R.; Xing, C. J. Med. Chem. 2009, 52, 7228. doi: 10.1021/jm901278z

    11. [11]

      Yang, E. B.; Guo, Y. J.; Zhang, K.; Chen, Y. Z.; Mack, P. Biochim. Biophys. Acta 2001, 1550, 144. http://www.sciencedirect.com/science/article/pii/S016748380100276X

    12. [12]

      Bukhari, S. N.; Lauro, G.; Jantan, I.; Bifulco, G.; Amjad, M. W. Bioorg. Med. Chem. 2014, 22, 4151. doi: 10.1016/j.bmc.2014.05.052

    13. [13]

      林玉萍, 虎春艳, 郑喜, 王秀丽, 万春平, 毛泽伟, 有机化学, 2017, 37, 237. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yjhu201701029&dbname=CJFD&dbcode=CJFQLin, Y. P.; Hu, C. Y.; Zheng, X.; Wang, X. L.; Wan, C. P.; Mao, Z. W. Chin. J. Org. Chem. 2017, 37, 237 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yjhu201701029&dbname=CJFD&dbcode=CJFQ

    14. [14]

      Yadav, V. R.; Prasad, S.; Sung, B.; Aggarwal, B. B. Int. Immunopharmacol. 2011, 11, 295. doi: 10.1016/j.intimp.2010.12.006

    15. [15]

      Mao, Z. W.; Zheng, X.; Lin, Y. P.; Hu, C. Y.; Wang, X. L.; Wan, C. P.; Rao, G. X. Bioorg. Med. Chem. Lett. 2016, 26, 3421. doi: 10.1016/j.bmcl.2016.06.055

    16. [16]

      Mao, Z. W.; Zheng, X.; Qi, Y.; Zhang, M. D.; Huang, Y.; Wan, C. P.; Rao, G. X. RSC Adv. 2016, 6, 7723. doi: 10.1039/C5RA20197G

    17. [17]

      Mao, Z. W.; Zheng, X.; Lin, Y. P.; Qi, Y.; Hu, C. Y.; Wan, C. P.; Rao, G. X. Heterocycles 2016, 92, 1102. doi: 10.3987/COM-16-13452

    18. [18]

      Ma, Y. L.; Zheng, X.; Gao, H.; Wan, C. P.; Rao, G. X.; Mao, Z. W. Molecules 2016, 21, 1684. doi: 10.3390/molecules21121684

    19. [19]

      Hall, M. J.; McDonnell, S. O.; Killoran, J.; O'Shea, D. F. J. Org. Chem. 2005, 70, 5571. doi: 10.1021/jo050696k

    20. [20]

      Montes-Avila, J.; Díaz-Camacho, S. P.; Sicairos-Félix, J.; Delgado-Vargas, F.; Rivero, I. A. Bioorg. Med. Chem. 2009, 17, 6780. doi: 10.1016/j.bmc.2009.02.052

    21. [21]

      Roman, B. I.; Ryck, T. D.; Dierickx, L.; Vanhoecke, B. W. A.; Katritzky, A. R.; Bracke, M.; Stevens, C. V. Bioorg. Med. Chem. 2012, 20, 4812. doi: 10.1016/j.bmc.2012.05.069

    22. [22]

      Qiu, K. M.; Wang, H. H.; Wang, L. M.; Luo, Y.; Yang, X. H.; Wang, X. M.; Zhu, H. L. Bioorg. Med. Chem. 2012, 20, 2010. doi: 10.1016/j.bmc.2012.01.051

  • Figure 1  Synthetic biological chalcone compounds

    Scheme 1  Synthetic routes of chalcone-piperazine compounds

    Figure 2  Structure-activity relationship of title compounds

    Table 1.  Structures and yields of compounds

    Compd. R R1 m.p.a/℃ Yieldb/%
    3   H Ethoxy 147~149 90
    4   H H3 168~170 82
    5   H Phenyl 177~179 76
    6   H 4-Fluorophenyl 186~188 69
    7   H 4-Chlorophenyl 196~198 73
    8   H 4-Bromophenyl 174~176 81
    9   H 4-Methylphenyl 172~174 78
    10 3, 4, 5-Trimethoxy Ethoxy 138~140 92
    11 3, 4, 5-Trimethoxy CH3 153~155 84
    12 3, 4, 5-Trimethoxy Phenyl 168~170 70
    13 3, 4, 5-Trimethoxy 4-Fluorophenyl 181~183 66
    14 3, 4, 5-Trimethoxy 4-Chlorophenyl 169~171 72
    15 3, 4, 5-Trimethoxy 4-Bromophenyl 153~155 83
    16 3, 4, 5-Trimethoxy 4-Methylphenyl 141~143 66
    17 3, 4, 5-Trimethoxy 4-Methoxyphenyl 132~134 84
    18 3, 4, 5-Trimethoxy 4-2-Naphthyl 177~179 60
    19 4-CH3 Ethoxy 141~143 85
    20 4-CH3 CH3 165~167 84
    21 4-CH3 Phenyl 173~175 65
    22 4-CH3 4-Methylphenyl 199~201 72
    23 4-Br Ethoxy 182~184 88
    24 4-Br CH3 204~206 83
    25 4-Br 4-Methylphenyl 180~182 76
    a Melting point was uncorrected. b Yields represented isolated yields.
    下载: 导出CSV

    Table 2.  Anti-inflammatory activities of compoundsa

    Compd. IC50/(mol•L-1)
    3 > 50
    4 9.43
    5 32.07
    6 15.88
    7 25.58
    8 > 50
    9 > 50
    10 > 50
    11 3.81
    12 7.47
    13 18.30
    14 9.53
    15 16.38
    16 6.26
    17 19.25
    18 > 50
    19 > 50
    20 11.85
    21 36.04
    22 > 50
    23 > 50
    24 25.24
    25 13.80
    a Values represent the concentration required to produce 50% inhibition of the response
    下载: 导出CSV

    Table 3.  In vitro cytotoxic activities [IC50/(μmol•L-1)] of title compoundsa

    Compd. A549 Hela sk-ov-3 L02
    3 > 50 > 50 > 50 > 50
    4 > 50 > 50 > 50 > 50
    5 > 50 > 50 > 50 > 50
    6 > 50 14.13±1.22 12.07±1.28 > 50
    7 2.35±0.24 0.39±0.02 3.16±0.64 > 50
    8 0.18±0.03 > 50 19.74±1.72 > 50
    9 > 50 13.76±1.54 > 50 24.27±1.92
    10 > 50 > 50 > 50 > 50
    11 > 50 > 50 > 50 > 50
    12 > 50 8.14±1.16 > 50 > 50
    13 > 50 18.23±2.02 19.81±1.86 > 50
    14 > 50 0.45±0.04 0.92±0.20 28.08±3.02
    15 3.83±0.91 1.06±0.27 12.60±1.32 23.22±1.66
    16 > 50 0.06±0.01 34.62±3.85 > 50
    17 > 50 18.93±1.82 > 50 > 50
    18 > 50 > 50 > 50 > 50
    19 > 50 > 50 > 50 > 50
    20 > 50 > 50 > 50 > 50
    21 5.15±0.57 2.31±0.42 9.55±1.12 > 50
    22 > 50 > 50 > 50 > 50
    23 > 50 > 50 0.37±0.04 > 50
    24 12.36±0.98 1.74±0.34 5.52±0.66 3.82±0.44
    25 0.54±0.11 0.05±0.01 9.12±1.26 33.24±2.72
    Cisplatin 11.54±1.15 20.52±1.84 5.68±0.82 > 50
    a Cytotoxicity as IC50 values for each cell line, the concentration of compound that inhibit 50% of the cell growth measured by MTT assay.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  3
  • 文章访问数:  1325
  • HTML全文浏览量:  264
文章相关
  • 发布日期:  2018-03-01
  • 收稿日期:  2017-07-30
  • 修回日期:  2017-10-24
  • 网络出版日期:  2017-03-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章