Citation: Cen Jinghe, Yang Kai, Li Jianxiao, Li Can, Yang Shaorong. Direct 3-Arylsulfenylation of Indoles with Thiols in Basic Ionic Liquid[J]. Chinese Journal of Organic Chemistry, ;2017, 37(12): 3213-3219. doi: 10.6023/cjoc201707005 shu

Direct 3-Arylsulfenylation of Indoles with Thiols in Basic Ionic Liquid

  • Corresponding author: Cen Jinghe,  Yang Kai,  Li Jianxiao, cejxli@scut.edu.cn Yang Shaorong, lisryang@scut.edu.cn
  • Received Date: 5 July 2017
    Revised Date: 16 August 2017
    Available Online: 18 December 2017

    Fund Project: the National Natural Science Foundation of China 21502055the China Postdoctoral Science Foundation 2016T90779the National Natural Science Foundation of China 21502055Project supported by the National Natural Science Foundation of China (Nos. 21502055, 21642005), the Fundamental Research Funds for the Central Universities (No. 2015ZM150) and the China Postdoctoral Science Foundation (No. 2016T90779)the Fundamental Research Funds for the Central Universities 2015ZM150

  • An efficient and convenient transition metal-free procedure for the synthesis of 3-sulfenylindoles derivatives in moderate to good yields from readily available indoles and thiols in basic ionic liquid has been developed. Their structures were confirmed by 1H NMR, 13C NMR and HRMS. This sulfenylation process provides a novel route for directly accessing 3-sulfenylindoles in good to excellent yields and good functional group tolerance with high atom efficiency. Notably, the current methodology could also be conveniently applied to the synthesis of thioarylated naturally occurring biologically active frameworks.
  • 加载中
    1. [1]

      (a) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Chem. Rev. 2013, 113, 3084.
      (b) Pan, X.; Xia, H.; Wu, J. Org. Chem. Front. 2016, 3, 1163.

    2. [2]

    3. [3]

      Bierbeek, A. V.; Gingras, M. Tetrahedron Lett. 1998, 39, 6283.  doi: 10.1016/S0040-4039(98)01327-6

    4. [4]

      (a) Qiao, Z.; Jiang, X. Org. Lett. 201618‚ 1550.
      (b) Jiang, Y.; Liang, G.; Zhang, C.; Loh, T.-P. Eur. J. Org. Chem. 2016, 3326.

    5. [5]

      (a) Taniguchi, N. J. Org. Chem. 2004, 69, 6904.
      (b) Wang, Y.; Zhang, X.; Liu, H.; Chen, H.; Huang, D. Org. Chem. Front. 2017, 4, 31.

    6. [6]

      (a) Ravi, C.; Reddy, N. N. K.; Venkatanarayana, P.; Samanta, S.; Adimurthy, S. J. Org. Chem. 2016, 81, 9964.
      (b) Matheis, C.; Bayarmagnai, B.; Goossen, L. J. Org. Chem. Front. 2016, 3, 949.
      (c) Wen, L.-R.; Shen, Q.-Y.; Guo, W.-S.; Li, M. Org. Chem. Front. 2016, 3, 870.

    7. [7]

      (a) Correa, A.; Carril, M.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 2880.
      (b) Fu, R.; Hao, W.-J.; Wu, Y.-N.; Wang, N.-N.; Tu, S.-J.; Li, G.; Jiang, B. Org. Chem. Front. 2016, 3, 1452.

    8. [8]

      (a) Reddy, V. P.; Swapna, K.; Kumar, A. V.; Rao, K. R. J. Org. Chem. 2009, 74, 3189.
      (b) Xi, Y.; Dong, B.; McClain, E. J.; Wang, Q.; Gregg, T. L.; Akhmedov, N. G.; Petersen, J. L.; Shi, X. Angew. Chem., Int. Ed. 2014, 53, 4657.
      (c) Xiong, H.-Y.; Pannecoucke, X.; Besset, T. Org. Chem. Front. 2016, 3, 620.

    9. [9]

      (a) Yang, F.-L.; Tian, S.-K. Angew. Chem., Int. Ed. 2013, 52, 4929.
      (b) Yuan, J.; Liu, C.; Lei, A. Org. Chem. Front. 2015, 2, 677.
      (c) Yang, F.-L.; Gui, Y.; Yu, B.-K.; Jin, Y-X.; Tian, S.-K. Adv. Synth. Catal. 2016, 358, 3368.

    10. [10]

      Funk, C. D. Nat. Rev. Drug Discovery 2005, 4, 664.  doi: 10.1038/nrd1796

    11. [11]

      (a) Ge, W.; Wei, Y. Green Chem. 2012, 14, 2066.
      (b) Azeredo, J. B.; Godoi, M.; Martins, G. M.; Silveira, C. C.; Braga, A. L. J. Org. Chem. 2014, 79, 4125.
      (c) Xiao, F.; Xie, H.; Liu, S.; Deng, G.-J. Adv. Synth. Catal. 2014, 356, 364.

    12. [12]

      (a) Zou, L.-H.; Reball, J.; Mottweiler, J.; Bolm, C. Chem. Commun. 2012, 48, 11307.
      (b) Gao, Z.; Zhu, X.; Zhang, R. RSC Adv. 2014, 4, 19891.

    13. [13]

      (a) Prasad, C. D.; Balkrishna, S. J.; Kumar, A.; Bhakuni, B. S.; Shrimali, K.; Biswas, S.; Kumar, S. J. Org. Chem. 2013, 78, 1434.
      (b) Rao, H.; Wang, P.; Wang, J.; Li, Z.; Sun, X.; Cao, S. RSC Adv. 2014, 4, 49165.

    14. [14]

      (a) Li, X.; Xu, Y.; Wu, W.; Jiang, C.; Qi, C.; Jiang, H. Chem.-Eur. J. 2014, 20, 7911.
      (b) Xu, Y.; Tang, X.; Hu, W.; Wu, W.; Jiang, H. Green Chem. 2014, 16, 3720.
      (c) Gao, Y.; Gao, Y.; Tang, X.; Peng, J.; Hu, M.; Wu, W.; Jiang, H. Org. Lett. 2016, 18, 1158.

    15. [15]

    16. [16]

      (a) Li, J.; Li, C.; Yang, S.; An, Y.; Wu, W.; Jiang, H. J. Org. Chem. 2016, 81, 2875.
      (b) Li, J.; Li, C.; Yang, S.; An, Y.; Wu, W.; Jiang, H. J. Org. Chem. 2016, 81, 7771.
      (c) Li, J.; Hu, W.; Li, C.; Yang, S.; Wu, W.; Jiang, H. Org. Chem. Front. 2017, 4, 373.

    17. [17]

      Dou, H.; Gao, S.; Fu, Z.; Liu, S. Chin. J. Org. Chem. 2011, 31, 1056(in Chinese).
       

    18. [18]

      Sang, P.; Chen, Z.; Zou, J.; Zhang, Y. Green Chem. 2013, 15, 2096.  doi: 10.1039/c3gc40724a

    19. [19]

      Huang, D.; Chen, J.; Dan, W.; Ding, J.; Liu, M.; Wu, H. Adv. Synth. Catal. 2012, 354, 2123.  doi: 10.1002/adsc.v354.11/12

    20. [20]

      Tudge, M.; Tamiya, M.; Savarin, C.; Humphrey, G. R. Org. Lett. 2006, 8, 565.  doi: 10.1021/ol052615c

    21. [21]

      Guo, Y.-J.; Tang, R.-Y.; Li, J.-H.; Zhong, P.; Zhang, X.-G. Adv. Synth. Catal. 2009, 351, 2615.  doi: 10.1002/adsc.v351:16

  • 加载中
    1. [1]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    2. [2]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    3. [3]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    4. [4]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    5. [5]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    6. [6]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    7. [7]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    8. [8]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    9. [9]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    10. [10]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    11. [11]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    12. [12]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    13. [13]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    14. [14]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    15. [15]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    16. [16]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    17. [17]

      Chuan′an DINGWeibo YANShaoying WANGHao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198

    18. [18]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    20. [20]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

Metrics
  • PDF Downloads(3)
  • Abstract views(1836)
  • HTML views(248)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return