Citation: Ye Meng, Shen Panpan, Duan Wenzeng, Song Chun, Ma Yudao. Asymmetric Boration of Chalcones Catalyzed by Bifunctional[2.2]Paracyclophane-Based N-Heterocyclic Carbene[J]. Chinese Journal of Organic Chemistry, ;2017, 37(11): 2919-2928. doi: 10.6023/cjoc201706035 shu

Asymmetric Boration of Chalcones Catalyzed by Bifunctional[2.2]Paracyclophane-Based N-Heterocyclic Carbene

  • Corresponding author: Song Chun, chunsong@sdu.edu.cn Ma Yudao, ydma@sdu.edu.cn
  • These authors contributed equally to this work
  • Received Date: 27 June 2017
    Revised Date: 12 August 2017
    Available Online: 16 November 2017

    Fund Project: the National Natural Science Foundation of China 81473085Project supported by the National Natural Science Foundation of China (Nos. 21372144, 81473085)the National Natural Science Foundation of China 21372144

Figures(4)

  • A robust chiral N-heterocyclic carbene precursor based on[2.2]paracyclophane was designed and synthesized for a highly enantioselective metal-free catalytic boration. Enantioselective 1, 4-addition of a commercially available bis(pinacolato)-diboron (B2(pin)2) to chalcones was achieved by using the new bifunctional chiral carbene as catalyst, affording the corresponding products in up to 99% yield and 97% enantiomeric excess. Moreover, it was found that water used as the additive plays a key role in the carbene-catalyzed enantioselective boration.
  • 加载中
    1. [1]

      (a) Beletskaya, I.; Pelter, A. Tetrahedron 1997, 53, 4957.
      (b) Laitar, D. S.; Tsui, E. Y.; Sadighi, J. P. J. Am. Chem. Soc. 2006, 128, 11036.
      (c) Burks, H. E.; Morken, J. P. Chem. Commun. 2007, 130, 4717.
      (d) Ishiyama, T.; Ishida, K.; Miyaura, N. Tetrahedron 2001, 57, 9813.

    2. [2]

      (a) Scott, H. K.; Aggarwal, V. K. Chem.-Eur. J. 2011, 17, 13124.
      (b) Xi, Y.; Hartwig, J. F. J. Am. Chem. Soc. 2016, 138, 6703.

    3. [3]

      (a) Smith, S. M.; Thacker, N. C.; Takacs, J. M. J. Am. Chem. Soc. 2008, 130, 3734.
      (b) Noh, D.; Chea, H.; Ju, J.; Yun, J. Angew. Chem., Int. Ed. 2009, 48, 6062.
      (c) Burks, H. E.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc. 2009, 131, 9134.
      (d) Sasaki, Y.; Zhong, C.; Sawamura, M.; Ito, H. J. Am. Chem. Soc. 2010, 132, 1226.
      (e) Lee, Y.; Jang, H.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 18234.
      (f) Park, J. K.; Lackey, H. H.; Ondrusek, B. A.; McQuade, D. T. J. Am. Chem. Soc. 2011, 133, 2410.
      (g) Ibrahem, I.; Breistein, P.; Córdova, A. Angew. Chem., Int. Ed. 2011, 50, 12036.
      (h) Sakae, R.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2015, 54, 613.
      (i) Chen, I.; Yin, L.; Itano, W.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 11664.
      (j) Neeve, E. C.; Geier, S. J.; Mkhalid, I. A. I.; Westcott, S. A.; Marder, T. B. Chem. Rev. 2016, 116, 9091.

    4. [4]

      (a) Kliman, L. T.; Mlynarski, S. N.; Morken, J. P. J. Am. Chem. Soc. 2009, 131, 13210.
      (b) Pelz, N. F.; Woodward, A. R.; Burks, H. E.; Sieber, J. D.; Morken, J. P. J. Am. Chem. Soc. 2004, 126, 16328.
      (c) For an overview, see:Takaya, J.; Iwasawa, N. ACS Catal. 2012, 2, 1993.
      (d) Kliman, L. T.; Mlynarski, S. N.; Ferris, G. E.; Morken, J. P. Angew. Chem., Int. Ed. 2012, 51, 521.

    5. [5]

      (a) Liu, P.; Fukui, Y.; Tian, P.; He, Z. T.; Wu, N. Y.; Lin, G. Q. J. Am. Chem. Soc. 2013, 135, 11700.
      (b) He, Z. T.; Zhao, Y.; Tian, P.; Wang, C.; Dong, H.; Lin, G. Q. Org. Lett. 2014, 16, 1426.
      (c) Jiang, L.; Cao, P.; Wang, M.; Chen, B.; Wang, B.; Liao, J. Angew. Chem., Int. Ed. 2016, 55, 13854.
      (d) Lou, Y.; Cao, P.; Jia, T.; Zhang, Y.; Wang, M.; Liao, J. Angew. Chem., Int. Ed. 2015, 54, 12134.
      (e) Park, J. K.; Lackey, H. H.; Rexford, M. D.; Kovnir, K.; Shatruk, M.; McQuade, D. T. Org. Lett. 2010, 12, 5008.
      (f) Lee, J. C. H.; McDonald, R.; Hall, D. G. Nat. Chem. 2011, 3, 894.
      (g) Kobayashi, S.; Xu, P.; Endo, T.; Ueno, M.; Kitanosono, T. Angew. Chem., Int. Ed. 2012, 51, 12763.
      (h) Schiffner, J. A.; Müther, K.; Oestreich, M. Angew. Chem., Int. Ed. 2010, 49, 1194.
      (i) Kubota, K.; Hayama, K.; Iwamoto, H.; Ito, H. Angew. Chem., Int. Ed. 2015, 54, 8809.
      (j) Hornillos, V.; Vila, C.; Otten, E.; Feringa, B. L. Angew. Chem., Int. Ed. 2015, 54, 7867.

    6. [6]

      For a review on Rh-catalyzed enantioselective hydroboration reactions, see:Carroll, A. M.; O'Sullivan, T. P.; Guiry, P. J. Adv. Synth. Catal. 2005, 347, 609.

    7. [7]

      Shiomi, T.; Adachi, T.; Toribatake, K.; Zhou, L.; Nishiyama, H. Chem. Commun. 2009, 5987.

    8. [8]

      (a) Schuster, C. H.; Li, B.; Morken, J. P. Angew. Chem. Int. Ed. 2011, 50, 7906.
      (b) Burks, H. E.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc. 2009, 131, 9134.

    9. [9]

      (a) Mun, S. ; Lee, J. -E. ; Yun, J. Org. Lett. 2006, 8, 4887.
      (b) Lee, J. -E. ; Kwon, J. ; Yun, J. Chem. Commun. 2008, 733.
      (c) Cheng, Q. -Q. ; Xu, H. Z. ; Shou, F. ; Zhou, Q. L. Acta Chim. Sinica 2015, 73, 326(in Chinese).
      (程清卿, 许唤朱, 守非, 周其林, 化学学报, 2015, 73, 326. )
      (d) Lillo, V. ; Prieto, A. ; Bonet, A. ; Diaz-Requejo, M. M. ; Ramirez, J. ; Perez, P. J. ; Fernández, E. Organometallics 2009, 28, 659.
      (e)Ding, W. ; Song, Q. L. Org. Chem. Front. 2016, 3, 14.
      (f) Sim, H. -S. ; Feng, X. ; Yun, J. Chem. -Eur. J. 2009, 15, 1939.
      (g) Liu, Q. ; Tian, B. ; Tian, P. ; Tong, X. F. ; Lin, G. Q. J. Org. Chem. 2015, 35, 1(in Chinese).
      (刘强, 田兵, 田平, 童晓峰, 林国强, 有机化学, 2015, 35, 1. )
      (h) Lee, J. -E. ; Yun, J. Angew. Chem., Int. Ed. 2008, 47, 145.
      (i) Liu, X. -X. ; Zhang, W. B. J. Org. Chem. 2016, 36, 2249(in Chinese).
      (刘媛媛, 张万斌, 有机化学, 2016, 36, 2249. )

    10. [10]

      Lillo, V.; Geier, M. J.; Westcott, S. A.; Fernández, E. Org. Biomol. Chem. 2009, 7, 4674.  doi: 10.1039/b909341a

    11. [11]

      Radomkit, S.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2014, 53, 3387.  doi: 10.1002/anie.201309982

    12. [12]

      Wu, H.; Radomkit, S.; O'Brien, J. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 8277.  doi: 10.1021/ja302929d

    13. [13]

      Bonet, A.; Gulyás, H.; Fernández, E. Angew. Chem., Int. Ed. 2010, 49, 5130.  doi: 10.1002/anie.v49:30

    14. [14]

      (a) Muchall, H. M. In Modern Cyclophane Chemistry, Eds.:Gleiter, R.; Hopf, H., Wiley-VCH, Verlag GmbH & Co. KGaA, 2004, 259.
      (b) Aly, A. A.; Brown, A. B. Tetrahedron 2009, 65, 8055.
      (c) Brown, C. J.; Farthing, A. C. Nature 1949, 164, 915.

    15. [15]

      (a) Hou, X.; Wu, X.; Dai, L.; Cao, B.; Sun, J. Chem. Commun. 2000, 1195.
      (b) Wu, X.; Hou, X.; Dai, L.; Tao, J.; Cao, B.; Sun, J. Tetrahedron:Asymmetry 2001, 12, 529.
      (c) Wu, X.; Zhang, T.; Hou, X. Tetrahedron:Asymmetry 2004, 15, 2357.
      (d) Jiang, B.; Zhao, X. Tetrahedron:Asymmetry 2004, 15, 1141.
      (e) Jiang, B.; Lei, Y.; Zhao, X. J. Org. Chem. 2008, 73, 7833.
      (f) Han, L.; Lei, Y.; Zhao, X.; Jiang, B. J. Org. Chem. 2015, 80, 3752.
      (g) Pye, P. J.; Rossen, K.; Reamer, R. A.; Tsou, N. N.; Volante, R. P.; Reider, P. J. J. Am. Chem. Soc. 1997, 119, 6207.
      (h) Hermanns, N.; Dahmen, S.; Bolm, C.; Bräse, S. Angew. Chem., Int. Ed. 2002, 41, 3692.
      (i) Dahmen, S.; Bräse, S. J. Am. Chem. Soc. 2002, 124, 5940.
      (j) Bräse, S.; Höfener, S. Angew. Chem., Int. Ed. 2005, 44, 7879.
      (k) Fürstner, A.; Alcarazo, M.; Krause, H.; Lehmann, C. W. J. Am. Chem. Soc. 2007, 129, 12676.
      (l) Ma, Y.; Song, C.; Ma, C.; Sun, Z.; Chai, Q.; Andrus, M. B. Angew. Chem., Int. Ed. 2003, 42, 5871.
      (m) Rozenberg, V.; Sergeeva, E.; Hopf, H. In Modern Cyclophane Chemistry, Eds.:Gleiter, R.; Hopf, H.; Wily-VCH, Weinheim, Germany, 2004, p. 435.

    16. [16]

      (a) Hong, B.; Ma, Y.; Zhao, L.; Duan, W.; He, F.; Song, C. Tetrahedron:Asymmetry 2011, 22, 1055.
      (b) Zhao, L.; Ma, Y.; Duan, W.; He, F.; Chen, J.; Song, C. Org. Lett. 2012, 14, 5780.
      (c) Niu, Z.; Chen, J.; Chen, Z.; Ma, M.; Song, C.; Ma, Y. J. Org. Chem. 2015, 80, 602.
      (d) Wang, L.; Chen, Z.; Ma, M.; Duan, W.; Song, C.; Ma, Y. Org. Biomol. Chem. 2015, 13, 10691.
      (e) Zhao, L.; Ma, Y.; Duan, W.; He, F.; Chen, J.; Song, C. J. Org. Chem. 2013, 78, 1677.
      (f) Chen, J.; Duan, W.; Chen, Z.; Ma, M.; Song, C.; Ma, Y. RSC Adv. 2016, 6, 75144.

    17. [17]

      Wu, H.; Garcia, J. M.; Haeffner, F.; Radomkit, S.; Zhugralin, A. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2015, 137, 10585.  doi: 10.1021/jacs.5b06745

    18. [18]

      Chen, Z.; Huo, Y.; An, P.; Wang, X.; Song, C.; Ma, Y. Org. Chem. Front. 2016, 3, 1725.  doi: 10.1039/C6QO00386A

    19. [19]

      (a) Buckley, B. R.; Neary, S. P.; Neary, S. P. Tetrahedron:Asymmetry 2010, 21, 1959.
      (b) Ma, Y.; Wei, S.; Wu, J.; Yang, Fei.; Liu, B.; Lan, J.; Yang, S.; You, J. Adv. Synth. Catal. 2008, 350, 2645.

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    3. [3]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    4. [4]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    5. [5]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    6. [6]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    7. [7]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    8. [8]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    9. [9]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    10. [10]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    11. [11]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    12. [12]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    13. [13]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    14. [14]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    18. [18]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    19. [19]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    20. [20]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

Metrics
  • PDF Downloads(9)
  • Abstract views(2185)
  • HTML views(223)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return