Citation: Zhang Fuchen, Wang Qiuxia, Wang Lipeng, Sun Shuai, Bai Yongping. Synthesis and Performance Characterization of Optical Copolyesters Based on Isomannite and Isophthalic Acid[J]. Chinese Journal of Organic Chemistry, ;2017, 37(12): 3229-3235. doi: 10.6023/cjoc201706012 shu

Synthesis and Performance Characterization of Optical Copolyesters Based on Isomannite and Isophthalic Acid

  • Corresponding author: Bai Yongping, baifengbai@hit.edu.cn
  • Received Date: 12 June 2017
    Revised Date: 27 July 2017
    Available Online: 16 December 2017

Figures(10)

  • Poly(ethylene terephthalate-co-isomannide terephthalate-co-ethylene isophthalate-co-isomannide isophthalate) (PEⅡT) was synthesized. The crystallization, optical and thermal performances of PEⅡT were investigated by using differential scanning calorimetry (DSC), ultraviolet-visible-near-infrared spectroscopy (UV-Vis-NIR), X-ray diffraction (XRD) and polarized light microscopy (POM). The results demonstrate that the crystallinity and crystallization rate of PEⅡT can be reduced effectively with the increase of the content of isophthalic acid units in copolyester PEⅡT. The increase of the content of isophthalic acid units made the steric hindrance of PEⅡT molecular chains increase, resulting in the decrease of crystallization ability, which is mainly because its cooling crystallization temperature gradually rise and the melt crystallization temperature gradually decrease until no generation of thermal crystallization phenomenon. Due to the decrease of the crystalline part, the haze of PEⅡT can be completely reduced to zero, and the light transmittance can reach 90.7%. At the same time, it was found that the decrease of PEⅡT light transmittance stems from the increase of yellowing degree, which makes the blue violet light of 330~550 nm wavelength absorbed by PEⅡT, leading to the low light transmittance. The melting point of PEⅡT is greatly affected by the content of isophthalic acid, but it still maintains good thermal decomposition performance.
  • 加载中
    1. [1]

    2. [2]

      (a) Jabarin, S. A. Polym. Eng. Sci. 1982, 22, 815.
      (b) Maruhashi, Y.; Iida, S. Polym. Eng. Sci. 2001, 41, 1987.

    3. [3]

      (a) Yan, H. H.; Chen, S.; Lu, M.; Zhu, X.; Li, Y. Q.; Wu, D. Z.; Tu, Y. F.; Zhu, X. L. Mater. Horiz. 2014, 1, 247.
      (b) Seto, R.; Kojima, T.; Hosokawa, K.; Koyama, Y.; Konishi, G.; Takata, T. Polymer 2010, 51, 4744.

    4. [4]

      Chen, Y. H.; Li, X.; Zhan, M. S. Polym. Polym. Compos. 2011, 19, 123.

    5. [5]

      Vilela, C.; Sousa, A. F.; Fonseca, A. C.; Serra, A. C.; Coelho, J. F.; Freire, C. S.; Silvestre, A. J. Polym. Chem. 2014, 5, 3119.  doi: 10.1039/C3PY01213A

    6. [6]

      Fenouillot, F.; Rousseau, A.; Colomines, G.; Saint-Loup, R.; Pascault, J.-P. Prog. Polym. Sci. 2010, 35, 578.  doi: 10.1016/j.progpolymsci.2009.10.001

    7. [7]

      (a) Wu, T. M.; Chang, C. C.; Yu, T. L. J. Polym. Sci., Part B: Polym. Phys. 2000, 38, 2515.
      (b) Finelli, L.; Fiorini, M.; Siracusa, V.; Lotti, N.; Munari, A. J. Appl. Polym. Sci. 2004, 92, 186.
      (c) Karayannidis, G. P.; Sideridou, I. D.; Zamboulis, D. N.; Bikiaris, D. N.; Sakalis, A. J. J. Appl. Polym. Sci. 2000, 78, 200.

    8. [8]

      MacDonald, W. A. Polym. Int. 2002, 51, 923.  doi: 10.1002/(ISSN)1097-0126

    9. [9]

      (a) Kim, Y. Y.; Heo, K.; Kim, K.-W.; Kim, J.; Shin, T. J.; Kim, J. R.; Yoon, I. S.; Ree, M. Macromol. Res. 2014, 22, 194.
      (b) Konstantopoulou, M.; Terzopoulou, Z.; Nerantzaki, M.; Tsagka-lias, J.; Achilias, D. S.; Bikiaris, D. N.; Exarhopoulos, S.; Papa-georgiou, D. G.; Papageorgiou, G. Z. Eur. Polym. J. 2017, 89, 349.
      (c) Qiu, D. L.; Zhang, P.; Zhang, S. Y.; Sun, J.; Wang, J. J.; Dai, L. X. Polym. Adv. Technol. 2015, 26, 1130.

    10. [10]

      Jeziorny, A. Polymer 1978, 19, 1142.  doi: 10.1016/0032-3861(78)90060-5

    11. [11]

      (a) Belletête, M.; Ranger, M.; Beaupré, S.; Leclerc, M.; Durocher, G. Chem. Phys. Lett. 2000, 316, 101.
      (b) Zhao, Y. B.; Wang, F.; Fu, Q.; Shi, W. F. Polymer 2007, 48, 2853.
      (c) Sakurai, K.; Fuji, M. Polym. J. 2000, 32, 676.

    12. [12]

      (a) Martins, C. I.; Cakmak, M. Polymer 2007, 48, 2109.
      (b) Cakmak, M.; White J. L.; Spruiell, J. E. Polym. Eng. Sci. 1989, 29, 1534.

    13. [13]

      (a) Tsai, Y.; Fan, C.-H.; Wu, J.-H. J. Polym. Res. 2016, 23, 1.
      (b) Ahn, J. S.; Kang, S. M.; Kim, M. K.; Kim, Y. J.; Yoon, K. C.; Park, O. O. Macromol. Res. 2016, 24, 609.

    14. [14]

      (a) Gheno, G.; Ganzerla, R.; Bortoluzzi, M.; Paganica, R. Prog. Org. Coat. 2015, 78, 239.
      (b) Skaja, A.; Croll, S. Polym. Degrad. Stab. 2003, 79, 123.

    15. [15]

      Zhang, F. C.; Kang, H. J.; Bai, Y. P.; Jiang, B.; Huang, Y. D.; Liu, L. RSC Adv. 2016, 6, 67677.  doi: 10.1039/C6RA09055A

  • 加载中
    1. [1]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    2. [2]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    3. [3]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    4. [4]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    7. [7]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    8. [8]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    9. [9]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    10. [10]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    15. [15]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    16. [16]

      Xianggui Kong Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067

    17. [17]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(5)
  • Abstract views(2717)
  • HTML views(297)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return