Citation: Feng Zhichao, Mao Guoliang, Wu Wei, Luo Mingjian, Liu Yang. Synthesis of Phosphine Ligands Based on 5-Amino-o-cresol and Its Application in Ethylene Oligomerization[J]. Chinese Journal of Organic Chemistry, ;2018, 38(3): 698-704. doi: 10.6023/cjoc201706010 shu

Synthesis of Phosphine Ligands Based on 5-Amino-o-cresol and Its Application in Ethylene Oligomerization

  • Corresponding author: Mao Guoliang, maoguoliang@nepu.edu.cn Liu Yang, 
  • Received Date: 9 June 2017
    Revised Date: 28 July 2017
    Available Online: 28 March 2017

    Fund Project: the Program for New Century Excellent Talents in University NCET-07-0142the National Natural Science Foundation of China 51534004Project supported by the National Natural Science Foundation of China (Nos. 51534004, U1362110), and the Program for New Century Excellent Talents in University (No. NCET-07-0142)the National Natural Science Foundation of China U1362110

Figures(1)

  • A phosphorus ligand containing PNP and P-O structure was synthesized by substitution reaction of 5-amino-o-cresol with chlorodiphenylphosphine and its structure was conformed. Its in situ prepared complex with Cr(acac)3 and preformed complex with CrCl3(THF)3 were used as main catalysts in catalyzing ethylene oligomerization, accompanied with methylaluminoxane (MAO) as cocatalyst. The effects of solvent, temperature, pressure and Al/Cr molar ratio on the activity and selectivity of the catalyst were investigated and compared with the in situ formation of 2-aminophenol and 4-aminophenol phosphine ligands catalytic system of catalyzing ethylene oligomerization effect. The experimental results showed that the activity reached 5.91×106 g/(mol·Cr·h), when the reaction was carried at 50℃ with reaction pressure of 2.5 MPa and the Al/Cr molar ratio of 700. The selectivity of 1-octene was 72.94% and the total selectivity of 1-hexene and 1-octene was 82.11%.
  • 加载中
    1. [1]

      Skupinska, J. Chem. Rev. 1991, 91, 613.  doi: 10.1021/cr00004a007

    2. [2]

      Forestière, A.; Olivier-Bourbigou, H.; Saussine, L. Oil Gas Sci. Technol. 2009, 64, 649.  doi: 10.2516/ogst/2009027

    3. [3]

      Qian, B. Z. Petrochem. Ind. Technol. 2011, 18, 58 (in Chinese).
       

    4. [4]

      An, J. X. Synth. Lubr. 2016, 43, 14 (in Chinese).
       

    5. [5]

      Carter, A.; Cohen, S. A.; Cooley, N. A.; Murphy, A.; Scutt, J.; Wass, D. F. Chem. Commun. 2002, 8, 858.

    6. [6]

      Bollmann, A.; Blann, K.; Dixon, J. T.; Hess, F. M.; Killian, E.; Maumela, H.; McGuinness, D. S.; Morgan, D. H.; Neveling, A.; Otto, S.; Overett, M.; Slawin, A. M. Z.; Wasserscheid, P.; Kuhlmann, S. J Am Chem Soc. 2004, 126, 14712.  doi: 10.1021/ja045602n

    7. [7]

      Varga, V.; Hodik, T.; Lamac, M.; Horacek, M.; Zukal, A.; Zilkova, N.; Parker Jr, W. O.; Pinkas, J. J. Organomet. Chem. 2015, 777, 57.  doi: 10.1016/j.jorganchem.2014.11.013

    8. [8]

      Zhang, J.; Li, A.; Hor, T. S. A. Organometallics 2009, 28, 2935.  doi: 10.1021/om9002347

    9. [9]

      Xu, J. Y. Petrol Refine Chem Ind. 2014, 45, 67 (in Chinese).
       

    10. [10]

      Liu, S. L.; Yuan, W.; Luo, C. T. Aging Appl. Synth. Mater. 2016, 45, 132 (in Chinese).  doi: 10.3969/j.issn.1671-5381.2016.03.031

    11. [11]

      Wang, J.; Li, Y.; Li, C. Q.; Zhang, H. Z. Chem. Ind. Eng Prog. 2012, 31, 91 (in Chinese).
       

    12. [12]

      Wang, J.; Liang H. J.; Li, C. Q.; Shi, W. G. Chem. Ind. Eng. Prog. 2016, 35, 793 (in Chinese).
       

    13. [13]

      Wang, J.; Fu, Z. J.; Li, C. Q.; Shi, W. G.; Wang, S. H. Polym. Mater. Sci. Eng. 2016, 32, 176 (in Chinese).
       

    14. [14]

      Wang, J.; Gong, X. Y.; Li, C. Q.; Li, H. Y. Chem. Ind. Eng. Prog. 2012, 31, 2729 (in Chinese).
       

    15. [15]

      Yang, L. J.; Wang, W. Z.; Wu, Y. Chin. J. Chem. 2014, 77, 951 (in Chinese).
       

    16. [16]

      Li, C. Q.; Lin, Z. Y.; Wang, J.; Gong, X. Y.; Zhao, Q.; Wang, Y. R.; Shao, N. Synth. Chem. 2015, 23, 198 (in Chinese).
       

    17. [17]

      McGuinness, D. S. Chem. Rev. 2011, 111, 2321.  doi: 10.1021/cr100217q

    18. [18]

      Agapie, T. Coord. Chem. Rev. 2011, 255, 861  doi: 10.1016/j.ccr.2010.11.035

    19. [19]

      Bryliakov, K. P.; Talsi, E. P. Coord. Chem. Rev. 2012, 256, 2994.  doi: 10.1016/j.ccr.2012.06.023

    20. [20]

      Dixon, J. T.; Green, M. J.; Hess, F. M.; Morgan, D. H. J. Organomet. Chem. 2004, 689, 3641.  doi: 10.1016/j.jorganchem.2004.06.008

    21. [21]

      Belov, G. P. Catal. Ind. 2014, 6, 266.  doi: 10.1134/S2070050414040047

    22. [22]

      Leeuwen, P. W. N. M. V.; Clément, N. D.; Tschan, J. L. Coord. Chem. Rev. 2011, 255, 1499.  doi: 10.1016/j.ccr.2010.10.009

    23. [23]

      Wang, T.; Gao, X.; Shi, P.; Pei, H.; Jiang, T. Appl. Petro. Res. 2015, 5, 143.  doi: 10.1007/s13203-015-0103-4

    24. [24]

      Sydora, O. L.; Jones, T. C.; Small, B. L.; Nett, A. J.; Fischer, A. A.; Carney, M. J. ACS Catal. 2012, 2, 2452.  doi: 10.1021/cs300488t

    25. [25]

      Radcliffe, J. E.; Batsanov, A. S.; Smith, D. M.; Scott, J. A.; Dyer, P. W.; Hanton, M. J. ACS Catal. 2015, 115, 7095.

    26. [26]

      Liu, R.; Xiao, S. M.; Zhong, X. H.; Cao, Y. C.; Liang, S. B.; Liu, Z. Y.; Ye, X. F.; Shen, A.; Zhu, H. P. Chin. J. Org. Chem. 2015, 35, 1861 (in Chinese).
       

    27. [27]

      Wang, J.; Huo, H. L.; Ma, L. L.; Li, C. Q.; Shi, W. G. Chem. Bull. 2016, 79, 31 (in Chinese).
       

    28. [28]

      Kuhlmann, S.; Dixon, J. T.; Haumann, M.; Morgan, D. H.; Ofili, J.; Spuhl, O.; Taccardi, N.; Wasserscheid, P. Adv. Synth. Catal. 2006, 348, 1200.  doi: 10.1002/(ISSN)1615-4169

    29. [29]

      Wang, Y. Y.; Wang, H. H.; Chuang, T. L.; Chen, B. H.; Lee, D. J. Energy Procedia. 2014, 61, 933.  doi: 10.1016/j.egypro.2014.11.998

    30. [30]

      Overett, M. J.; Blann, L. K.; Bollmann, A.; Dixon, J. T.; Haasbroek, D.; Killian, E.; Maumela, H.; Mcguinness, D. S.; Morgan, D. H. J. Am. Chem. Soc. 2005, 127, 10723.  doi: 10.1021/ja052327b

    31. [31]

      Shao, H. Q.; Li, Y. F.; Gao, X. L.; Cao, C. G.; Tao, Y. Q.; Lin, J. C.; Jiang, T. J. Mol. Catal. A: Chem. 2014, 390, 152.  doi: 10.1016/j.molcata.2014.03.020

    32. [32]

      Shao, H. Q.; Zhou, H.; Guo, X. Y.; Tao, Y. Q.; Jiang, T.; Qin, M. G. Catal. Commun. 2015, 60, 14.  doi: 10.1016/j.catcom.2014.11.010

    33. [33]

      Peulecke, N.; Muller, B. H.; Spannenberg, A.; Hohne, M.; Rosenthal, U.; Wohl, A.; Muller, W.; Alqahtani. A.; Alhazmi, M. Dalton Trans. 2016, 45, 8869.  doi: 10.1039/C6DT01109H

    34. [34]

      Wohl, A.; Muller, W.; Peulecke, N.; Muller, B. H.; Peitz, S.; Heller, D.; Rosenthal, U. J. Mol. Catal. A: Chem. 2009, 297, 1.  doi: 10.1016/j.molcata.2008.09.026

    35. [35]

      Song, C.; Mao, G. L.; Liu, Z. H.; Ning, Y. N.; Jiang, T. Chin. J. Org. Chem. 2016, 36, 2105 (in Chinese).
       

    36. [36]

      Wang, S. H.; Li, J. Z.; Wang, G. Z.; Zhang, B. J.; Qu, J. B. Polym. Bull. 2012, 4, 122.

    37. [37]

      Mogorosi, M. M.; Mahamo, T.; Moss, J. R.; Mapolie, S. F.; Slootweg, J. C.; Lammertsma, K.; Smith, G. S. J. Organomet. Chem. 2011, 696, 3585.  doi: 10.1016/j.jorganchem.2011.07.042

    38. [38]

      Tang, X. B.; Zhang, D. H.; Jie, S. Y.; Sun, W. H.; Chen, J. T. J. Organomet. Chem. 2005, 690, 3918.  doi: 10.1016/j.jorganchem.2005.05.026

    39. [39]

      Jabri, A.; Temple, C.; Crewdson, P.; Gambarotta, S.; Korobkov, L.; Duchateau, R. J. Am. Chem. Soc. 2006, 128, 9238.  doi: 10.1021/ja0623717

    40. [40]

      McGuinness, D. S.; Rucklidge, A. J.; Tooze, R. P.; Slawin, A. M. Z. Organometallics 2007, 26, 2561.  doi: 10.1021/om070029c

    41. [41]

      Walsh, R.; Morgan, D. H.; Bollmann, A.; Dixon J. T. Appl. Catal. A: Gen. 2006, 306, 184.  doi: 10.1016/j.apcata.2006.03.055

    42. [42]

      Chen, J. X.; Huang, Y. B.; Li, Z. S.; Zhang, Z. C.; Wei, C. X.; Lan, T. Y.; Zhang, W. J. J. Mol. Catal. A: Chem. 2006, 259, 133.  doi: 10.1016/j.molcata.2006.06.016

    43. [43]

      Sun, W. H.; Song, S. J.; Li, B. X.; Redshaw, C.; Hao, X.; Li, Y. S.; Wang, F. S. Dalton Trans. 2012, 41, 11999.  doi: 10.1039/c2dt30989k

    44. [44]

      Ning, Y. N.; Niu, B.; Jiang, T.; Ding, W. Y.; Yin, X. F. Chem. Prod. Technol. 2009, 16, 19 (in Chinese).  doi: 10.3969/j.issn.1006-6829.2009.06.006

    45. [45]

      Ning, Y. N.; Xue, Q. M.; Mao, G. L.; Jiang, T. Chem. Prog. 2011, 30, 1003 (in Chinese).
       

    46. [46]

      Sa, S.; Lee, S. M.; Sang, Y. K. J. Mol. Catal. A Chem. 2013, 378, 17.  doi: 10.1016/j.molcata.2013.05.015

    47. [47]

      Mao, G. L.; Ning, Y. N.; Hu, W. B.; Li, S. M.; Song, X. F.; Niu, B.; Jiang, T. Chin. Sci. Bull. 2008, 53, 3511.
       

    48. [48]

      Wang, Q. A.; Fan, H. F.; Liao, T. G. Technical Handbook of Organic Chemistry Laboratory, Chemical Industry Press, Beijing, 2012, pp. 201~205 (in Chinese).

  • 加载中
    1. [1]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    2. [2]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    3. [3]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    4. [4]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    5. [5]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    6. [6]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    9. [9]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    10. [10]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    11. [11]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    12. [12]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    13. [13]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    14. [14]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    15. [15]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    16. [16]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    17. [17]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    18. [18]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

Metrics
  • PDF Downloads(6)
  • Abstract views(1420)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return