Citation: Yang Jimin, Li Ziqi, Zhu Shoufei. Progresses on the Application of Stable Borane Adducts in the Synthesis of Organoborons[J]. Chinese Journal of Organic Chemistry, ;2017, 37(10): 2481-2497. doi: 10.6023/cjoc201705034 shu

Progresses on the Application of Stable Borane Adducts in the Synthesis of Organoborons

  • Corresponding author: Zhu Shoufei, sfzhu@nankai.edu.cn
  • Received Date: 23 May 2017
    Revised Date: 18 July 2017
    Available Online: 9 October 2017

    Fund Project: the National Natural Science Foundation of China 21625204Project supported by the National Natural Science Foundation of China (Nos. 21625204, 21421062, 21290182), the National Basic Research Program of China (973 Program, No. 2012CB821600), the “111” Project of the Ministry of Education of China (No. B06005), and the National Program for Support of Top-notch Young Professionals.the National Basic Research Program of China 2012CB821600the National Natural Science Foundation of China 21421062the National Natural Science Foundation of China 21290182the National Basic Research Program of China 973项目the “111” Project of the Ministry of Education of China B06005

Figures(29)

  • Organoboron compounds are wildly used in organic synthesis, materials science, life and health science, etc. The development of synthetic methodologies of organoborons has therefore gained intense attention nowadays. Typically, Bis(pinacolato)diboron (B2Pin2), pinacolborane (HBpin) and catecholatoborane (HBCat) are predominantly used as boron reagents in catalytic C-B bond forming reactions. Different from the above traditional boron reagents, borane adducts with strong Lewis bases, such as amines, phosphines, and N-heterocyclic carbenes, are promising boron reagents because of their readily accessibility, relatively high stability, and easy operation. Moreover, the different chemical properties of these stable borane adducts towards the traditional boron reagents provide possibilities for development of new C-B bond formation reactions. The applications of the stable borane adducts as terminal boron reagents in hydroboration of alkenes or alkynes, C-H bond borylation, carbene insertion into B-H bonds, cascade cyclization initiated by boryl radicals and substitutions, which provide new methods for the preparation of organoborons are reviewed in this paper.
  • 加载中
    1. [1]

      (a) Carboni, B.; Monnier, L. Tetrahedron 1999, 55, 1197.
      (b) Staubitz, A.; Robertson, A. P. M.; Sloan, M. E.; Manners, I. Chem. Rev. 2010, 110, 4023.
      (c) Staubitz, A.; Robertson, A. P. M.; Manners, I. Chem. Rev. 2010, 110, 4079.

    2. [2]

      For a recent review, see:(a) Yang, X.; Xie, Z.; He, J.; Yu, L. Chin. J. Org. Chem. 2015, 35, 603(in Chinese).
      (阳香华, 谢珍茗, 何军, 余林, 有机化学, 2015, 35, 603.) For selected examples, see:
      (b) Blaquiere, N.; Diallo-Garcia, S.; Gorelsky, S. I.; Black, D. A.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 14034.
      (c) Shao, Z.; Fu, S.; Wei, M.; Zhou, S.; Liu, Q. Angew. Chem., Int. Ed. 2016, 55, 14653.
      (d) Zhou, Q.; Zhang, L.; Meng, W.; Feng, X.; Yang, J.; Du, H. Org. Lett. 2016, 18, 5189.
      (e) Li, S.; Meng, L.; Du, H. Org. Lett. 2017, 19, 2604.

    3. [3]

      Curran, D. P.; Solovyev, A.; Brahmi, M. M.; Fensterbank, L.; Malacria, M.; Lacôte, E. Angew. Chem., Int. Ed. 2011, 50, 10294.  doi: 10.1002/anie.201102717

    4. [4]

      For selected reviews, see:(a) Ramachandran, P. V., Brown, H. C. Organoboranes for Syntheses, ACS Symposium Series 783, American Chemical Society, Washington, DC, 2001.
      (b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
      (c) Braunschweig, H.; Dewhurst, R. D.; Schneider, A. Chem. Rev. 2010, 110, 3924.
      (d) Jäkle, F. Chem. Rev. 2010, 110, 3985.
      (e) Dembitsky, V. M.; Quntar, A. A. A. A.; Srebnik, M. Chem. Rev. 2011, 111, 209.
      (f) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417.
      (g) Leonori, D.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2015, 54, 1082.

    5. [5]

      For reviews, see:(a) Burgess, K.; Ohlmeyer, M. J. Chem. Rev. 1991, 91, 1179.
      (b) Beletskaya, I.; Moberg, C. Chem. Rev. 2006, 106, 2320.
      (c) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890.
      (d) Hartwig, J. F. Chem. Soc. Rev. 2011, 40, 1992.
      (e) Ros, A.; Fernández, R.; Lassaletta, J. M. Chem. Soc. Rev. 2014, 43, 3229.

    6. [6]

      (a) Welch, C. N.; Shore, G. S. Inorg. Chem. 1968, 7, 225.
      (b) Brown, H. C.; Gupta, S. K. J. Am. Chem. Soc. 1975, 97, 5249.

    7. [7]

      Zaidlewicz, M.; Brown, H. C.; Siebert, W. Advances in Boron Chemistry, The Royal Society of Chemistry, Cambridge, 1997, 171.

    8. [8]

      (a) Schaeffer, G. W.; Anderson, E. R. J. Am. Chem. Soc. 1949, 71, 2143.
      (b) Nainan, K. C.; Ryschkewitsch, G. E. Inorg. Chem. 1969, 8, 2671.

    9. [9]

      (a) Baldwin, A. R.; Washburn, R. M. J. Org. Chem. 1961, 26, 3549.
      (b) Brahmi, M. M.; Monot, J.; Murr, M, D.; Curran, D. P.; Fensterbank, L.; Lacôte, E.; Malacria, M. J. Org. Chem. 2010, 75, 6983.

    10. [10]

      (a) Brown, H. C.; Chandrasekharan, J. J. Am. Chem. Soc. 1984, 106, 1863.
      (b) Kanth, J. V. B. Aldrichim. Acta 2002, 35, 57.

    11. [11]

      Scheideman, M.; Shapland, P.; Vedejs, E. J. Am. Chem. Soc. 2003, 125, 10502.  doi: 10.1021/ja034655m

    12. [12]

      Beak, P. Acc. Chem. Res. 1992, 25, 215.  doi: 10.1021/ar00017a002

    13. [13]

      Clay, J. M.; Vedejs, E. J. Am. Chem. Soc. 2005, 127, 5766.  doi: 10.1021/ja043743j

    14. [14]

      (a) Shapland, P.; Vedejs, E. J. Org. Chem. 2006, 71, 6666.
      (b) Karatjas, A. G.; Vedejs, E. J. Org. Chem. 2008, 73, 9508.
      (c) Scheideman, M.; Wang, G.; Vedejs, E. J. Am. Chem. Soc. 2008, 130, 8669.

    15. [15]

      Pronin, S. V.; Tabor, M. G.; Jansen, D. J.; Shenvi, R. A. J. Am. Chem. Soc. 2012, 134, 2012.  doi: 10.1021/ja211090n

    16. [16]

      Tabor, M. G.; Shenvi, R. A. Org. Lett. 2015, 17, 5776.  doi: 10.1021/acs.orglett.5b02992

    17. [17]

      Prokofjevs, A.; Boussonnière, A.; Li, L.; Bonin, H.; Lacôte, E.; Curran, D. P.; Vedejs, E. J. Am. Chem. Soc. 2012, 134, 12281.  doi: 10.1021/ja305061c

    18. [18]

      Pan, X.; Boussonnière, A.; Curran, D. P. J. Am. Chem. Soc. 2013, 135, 14433.  doi: 10.1021/ja407678e

    19. [19]

      Monot, J.; Solovyev, A.; Bonin-Dubarle, H.; Derat, É.; Curran, D. P.; Robert, M.; Fensterbank, L.; Malacria, M.; Lacôte, E. Angew. Chem., Int. Ed. 2010, 49, 9166.  doi: 10.1002/anie.201004215

    20. [20]

      Boussonnière, A.; Pan, X.; Geib, S. J.; Curran, D. P. Organometallics 2013, 32, 7445.  doi: 10.1021/om400932g

    21. [21]

      Sewell, L. J.; Chaplin, A. B.; Weller, A. S. Dalton Trans. 2011, 40, 7499.  doi: 10.1039/c1dt10819k

    22. [22]

      Johnson, H. C.; Torry-Harris, R.; Ortega, L.; Theron, R.; McIndoe, J. S.; Weller, A. S. Catal. Sci. Technol. 2014, 4, 3486.  doi: 10.1039/C4CY00597J

    23. [23]

      Toure, M.; Chuzel, O.; Parrain, J. L. J. Am. Chem. Soc. 2012, 134, 17892.  doi: 10.1021/ja309018f

    24. [24]

      Wang, Q.; Motika, S. E.; Akhmedov, N. G.; Petersen, J. L.; Shi, X. Angew. Chem., Int. Ed. 2014, 53, 5418.  doi: 10.1002/anie.v53.21

    25. [25]

      Motika, S. E.; Wang, Q.; Akhmedov, N. G.; Wojtas, L.; Shi, X. Angew. Chem., Int. Ed. 2016, 55, 11582.  doi: 10.1002/anie.201604986

    26. [26]

      Taniguchi, T.; Curran, D. P. Angew. Chem., Int. Ed. 2014, 53, 13150.  doi: 10.1002/anie.201408345

    27. [27]

      Nerkar, S.; Curran, D. P. Org. Lett. 2015, 17, 3394.  doi: 10.1021/acs.orglett.5b01101

    28. [28]

      McFadden, T. R.; Fang, C.; Geib, S. J.; Merling, E.; Liu, P.; Curran D. P. J. Am. Chem. Soc. 2017, 139, 1726.  doi: 10.1021/jacs.6b09873

    29. [29]

      De Vries, T. S.; Prokofjevs, A.; Harvey, J. N.; Vedejs, E. J. Am. Chem. Soc. 2009, 131, 14679.  doi: 10.1021/ja905369n

    30. [30]

      Farrell, J. M.; Stephan, D. W. Angew. Chem., Int. Ed. 2015, 54, 5214.  doi: 10.1002/anie.v54.17

    31. [31]

      Prokofjevs, A.; Vedejs, E. J. Am. Chem. Soc. 2011, 133, 20056.  doi: 10.1021/ja208093c

    32. [32]

      Prokofjevs, A.; Jermaks, J.; Borovika, A.; Kampf, J. W.; Vedejs, E. Organometallics 2013, 32, 6701.  doi: 10.1021/om400651p

    33. [33]

      Cazorla, C.; De Vries, T. S.; Vedejs, E. Org. Lett. 2013, 15, 984.  doi: 10.1021/ol303203m

    34. [34]

      (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998.
      (b) Dorwald, F. Z. Metal Carbenes in Organic Synthesis, Wiley-VCH, Weinheim, Germany, 1999.
      (c) Doyle, M. P. Chem. Rev. 1986, 86, 919.
      (d) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911.
      (e) Zhu, S.-F.; Zhou, Q.-L. Nat. Sci. Rev. 2014, 1, 580.
      (f) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981.

    35. [35]

      Bedel, C.; Foucaud, A. Tetrahedron Lett. 1993, 34, 311.  doi: 10.1016/S0040-4039(00)60575-0

    36. [36]

      Monnier, L.; Delcros, J.-G.; Carboni, B. Tetrahedron 2000, 56, 6039.  doi: 10.1016/S0040-4020(00)00565-2

    37. [37]

      Imamoto, T.; Yamanoi, Y. Chem. Lett. 1996, 25, 705.  doi: 10.1246/cl.1996.705

    38. [38]

      Cheng, Q.-Q.; Zhu, S.-F.; Zhang, Y.-Z.; Xie, X.-L.; Zhou, Q.-L. J. Am. Chem. Soc. 2013, 135, 14094.  doi: 10.1021/ja408306a

    39. [39]

      Cheng, Q.-Q.; Xu, H.; Zhu, S.-F.; Zhou, Q.-L. Acta Chim. Sinica 2015, 73, 326(in Chinese).
       

    40. [40]

      Li, X.; Curran, D. P. J. Am. Chem. Soc. 2013, 135, 12076.  doi: 10.1021/ja4056245

    41. [41]

      Allen, T. H.; Curran, D. P. J. Org. Chem. 2016, 81, 2094.  doi: 10.1021/acs.joc.6b00091

    42. [42]

      Chen, D.; Zhang, X.; Qi, W.-Y.; Xu, B.; Xu, M.-H. J. Am. Chem. Soc. 2015, 137, 5268.  doi: 10.1021/jacs.5b00892

    43. [43]

      Hyde, S.; Veliks, J.; Liégault, B.; Grassi, D.; Taillefer, M.; Gouverneur, V. Angew. Chem., Int. Ed. 2016, 55, 3785.  doi: 10.1002/anie.201511954

    44. [44]

      Yang, J.-M.; Li, Z.-Q.; Li, M.-L.; He, Q.; Zhu, S.-F.; Zhou, Q.-L. J. Am. Chem. Soc. 2017, 139, 3784.  doi: 10.1021/jacs.6b13168

    45. [45]

      For recent examples see:(a) Aramaki, Y.; Omiya, H.; Yamashita, M.; Nakabayashi, K.; Ohkoshi, S.; Nozaki, K. J. Am. Chem. Soc. 2012, 134, 19989. (b) Rosenthal, A. J.; Devillard, M.; Miqueu, K.; Bouhadir, G.; Bourissou, D. Angew. Chem., Int. Ed. 2015, 54, 9198. (c) Silva Valverde, M. F.; Schweyen, P.; Gisinger, D.; Bannenberg, T.; Freytag, M.; Kleeberg, C.; Tamm, M. Angew. Chem., Int. Ed. 2017, 56, 1135.  doi: 10.1021/ja3094372

    46. [46]

      (a) Roberts, B. P. Chem. Soc. Rev. 1999, 28, 25.
      (b) Rablen, P. R. J. Am. Chem. Soc. 1997, 119, 8350.
      (c) Walton, J. C. Angew. Chem., Int. Ed. 2009, 48, 1726.
      (d) Lalevée, J.; Blanchard, N.; Chany, A.-C.; Tehfe, M.-A.; Allonas, X.; Fouassier, J.-P. J. Phys. Org. Chem. 2009, 22, 986.

    47. [47]

      (a) Barton, D. H. R.; Jacob, M. Tetrahedron Lett. 1998, 39, 1331.
      (b) Ueng, S.-H.; Brahmi, M. M.; Derat, É.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P. J. Am. Chem. Soc. 2008, 130, 10082.

    48. [48]

      (a) Pan, X.; Lalevée, J.; Lacôte, E.; Curran, D. P. Adv. Synth. Catal. 2013, 355, 3522.
      (b) Ueng, S.-H.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P. Org. Biomol. Chem. 2011, 9, 3415.
      (c) Pan, X.; Lacôte, E.; Lalevée, J.; Curran, D. P. J. Am. Chem. Soc. 2012, 134, 5669.

    49. [49]

      (a) Telitel, S.; Schweizer, S.; Morlet-Savary, F.; Graff, B.; Tschamber, T.; Blanchard, N.; Fouassier, J. P.; Lelli, M.; Lacôte, E.; Lalevée, J. Macromolecules 2013, 46, 43.
      (b) Lalevée, J.; Telitel, S.; Tehfe, M. A.; Fouassier, J. P.; Curran, D. P.; Lacôte, E. Angew. Chem., Int. Ed. 2012, 51, 5958.

    50. [50]

      (a) Pan, X.; Vallet, A.-L.; Schweizer, S.; Dahbi, K.; Delpech, B.; Blanchard, N.; Graff, B.; Geib, S. J.; Curran, D. P.; Lalevée, J.; Lacôte, E. J. Am. Chem. Soc. 2013, 135, 10484.
      (b) Telitel, S.; Vallet, A.-L.; Schweizer, S.; Delpech, B.; Blanchard, N.; Morlet-Savary, F.; Graff, B.; Curran, D. P.; Robert, M.; Lacôte, E.; Lalevée, J. J. Am. Chem. Soc. 2013, 135, 16938.

    51. [51]

      Watanabe, T.; Hirose, D.; Curran, D. P.; Taniguchi, T. Chem.-Eur. J. 2017, 23, 5404.  doi: 10.1002/chem.v23.23

    52. [52]

      Ren, S.-C.; Zhang, F.-L.; Qi, J.; Huang, Y.-S.; Xu, A.-Q.; Yan, H.-Y.; Wang, Y.-F. J. Am. Chem. Soc. 2017, 139, 6050.  doi: 10.1021/jacs.7b01889

    53. [53]

      Solovyev, A.; Chu, Q.; Geib, S. J.; Fensterbank, L.; Malacria, M.; Lacôte, E.; Curran, D. P. J. Am. Chem. Soc. 2010, 132, 15072.  doi: 10.1021/ja107025y

    54. [54]

      Merling, E.; Lamm, V.; Geib, S. J.; Lacôte, E.; Curran, D. P. Org. Lett. 2012, 14, 2690.  doi: 10.1021/ol300851m

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    3. [3]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    4. [4]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    5. [5]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    6. [6]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    7. [7]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    8. [8]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    9. [9]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    10. [10]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    13. [13]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    14. [14]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    15. [15]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    16. [16]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    17. [17]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    18. [18]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    19. [19]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    20. [20]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

Metrics
  • PDF Downloads(119)
  • Abstract views(6288)
  • HTML views(2219)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return