Citation: Yuan Hang, Chen Huilian, Luo Zhibin, Gao Yuhua, Lu Hongfei. Synthesis of a Pd-Pyridine N-Heterocyclic Carbene Complex (NHC)-PdCl2(Py) and Its Efficient Application in Coupling Reaction[J]. Chinese Journal of Organic Chemistry, ;2017, 37(11): 2948-2955. doi: 10.6023/cjoc201705027 shu

Synthesis of a Pd-Pyridine N-Heterocyclic Carbene Complex (NHC)-PdCl2(Py) and Its Efficient Application in Coupling Reaction

  • Corresponding author: Gao Yuhua,  Lu Hongfei, zjluhf1979@hotmail.com
  • Received Date: 17 May 2017
    Revised Date: 13 July 2017
    Available Online: 11 November 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21402067)the National Natural Science Foundation of China 21402067

Figures(3)

  • A Pd-pyridine N-heterocyclic carbene complex (NHC)PdCl2(Py) has been synthesized through two steps and successfully applied as an effective catalyst for the Suzuki coupling reaction, Heck coupling reaction and Sonogashira coupling reaction. The catalyst demonstrates excellent catalytic activity in Suzuki coupling reaction and Sonogashira coupling reaction with a catalyst loading of 0.1 mol% and 1 mol% in Heck coupling reaction.
  • 加载中
    1. [1]

      Schuster, O.; Yang, L. Y.; Raubenheimer, G. H.; Albrecht, M. Chem. Rev.2009, 109, 3445.  doi: 10.1021/cr8005087

    2. [2]

      (a) Hahn, F. E.; Jahnke, M. C. Angew. Chem., Int. Ed. 2009, 47, 3122.
      (b) Brien, C. J.; E. Kantchev, A. B.; Hadei, C. V.; Chass, G. A.; .Lough, A.; Hopkinson, A. C.; Organ, M, G. Chem. Eur. J. 2006, 12, 4743.
      (c) Organ, M. G.; Avola, S.; Dubovyk, I.; Hadei, N.; Kantchev, A. B.; C. Brien, J.; Valente, V. Chem. Eur. J.2006, 12, 4749.
      (d) Calimsiz, S.; Sayah, M.; Mallik, D.; Organ, M. G. Angew. Chem., Int. Ed. 2010, 49, 2014.
      (e) Calimsiz, S.; Organ, M. G. Chem. Commun. 2011, 47, 5181.
      (f) Hoi, K. W.; Froese, R. D.; Hopkinson, A. C.; Organ, M. G. Chem. Eur. J. 2012, 18, 145.

    3. [3]

      (a) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290.
      (b) Chartoire, A; Frogneux, X.; Boreux, A.; Slawin, A. M. Z.; Nolan, S. P. Organometallics 2012, 31, 6947.
      (c) Farmer, J. L.; Hunter, H. N.; Organ, M. G. J. Am. Chem. Soc. 2012, 134, 17470.
      (d) Sase, S.; Jaric, M.; Metzger, A.; Malakhov, V.; Knochel, P. J. Org. Chem.2008, 73, 7380.
      (e) Colombel, V.; Rombouts, F.; Oehlrich, D.; Molander, G. A. J. Org. Chem. 2012, 77, 2966.

    4. [4]

      (a) Kaufhold, O.; Hahn, F. E. Angew. Chem., Int. Ed. 2008, 47, 4507.
      (b) Han, Y.; Huynh, H. V.; Tan, G. K. Organometallics 2007, 26, 6447.
      (c) Liao, C. Y.; Chan, K. T.; Zeng, J. Y.; Hu, C. H.; Tu, C. Y.; Lee, H. M. Organometallics 2007, 26, 1692.
      (d) Zanardi, A.; Mata, J. A.; Peris, E. Organometallics 2009, 28, 4335.

    5. [5]

      (a) Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361.
      (b) Valente, C.; Ho, K. O.; Mallik, D.; Sayah, M.; Organ, M. G. Angew. Chem., Int. Ed. 2012, 51, 3314.

    6. [6]

      (a) Lin, Y. C.; Hsueh, H. H.; Kanne, S.; Chang, L. K.; Liu, F. C.; Lee, G. H.; Peng, S. M. Organometallics 2013, 32, 3859.
      (b) Tamami, B.; Farjadian, F.; Ghasemi, S.; Allahyari, H. New J. Chem. 2013, 37, 2011.
      (c) Faraji, L.; Jadidi, K.; Notash, B. Tetrahedron Lett. 2014, 55, 346.
      (d) Wilczewska, A. Z.; Misztalewsk, I. Organometallics 2014, 33, 5203.
      (e) Taira, T.; Yanagimoto, T.; Sakai, K.; Sakai, H.; Endo, A.; Imura, T. Tetrahedron2016, 72, 4117.

    7. [7]

      (a) Zhong, R.; Pö thig, A.; Feng, Y. K.; Riener, K.; Herrmann, W. A.; Kühn, F. E. Green Chem.2014, 16, 4955.
      (b)Marion, N.; Nolan, S. P. Acc. Chem. Res. 2008, 41, 1440.
      (c) Xu, S. J.; Song, K. P.; Li, T.; Tan, B. J. Mater. Chem. A 2015, 3, 1272.
      (d) Xu, C.; Li, H. M.; Xiao, Z. Q.; Wang, Z. Q.; Tang, S. F.; Ji, B. M.; Hao, X. Q.; Song, M. P. Dalton Trans. 2014, 43, 10235.
      (e) Rajabi, F.; Thiel, W. R. Adv. Synth. Catal. 2014, 356, 1873.

    8. [8]

      (a) Gallop, C. W. D.; Chen, M. T.; Navarro, O. Org. Lett. 2014, 16, 3724.
      (b) Boubakri, L.; Yasar, S.; Dorcet, V.; Roisnel, T.; Bruneau, C.; Hamdib, N.; Ozdemira, I. New J. Chem. 2017, 41, 5105.
      (c) Bernhammer, J. C.; Chong, N. X.; Jothibasu, R.; Zhou, B. B; Huynh, H. V. Organometallics 2014, 33, 3607.
      (d) John, A.; Modak, S.; Madasu, M.; Katari, M.; Ghosh, P. Polyhedron 2013, 64, 20.

    9. [9]

      Lu, H. F.; Wang, L.; Yang, F. F.; Wu, R. Z.; Shen, W. RSC Adv. 2014, 4, 30447.  doi: 10.1039/C4RA02480J

    10. [10]

      Tang, Y.; Yang, F. F.; Nie, S. P.; Wang, L.; Luo, Z. B.; Lu, H. F. Chin. J. Org. Chem. 2015, 35, 705(in Chinese).
       

    11. [11]

      Rajabi, F.; Thiel, W. R. Adv. Synth. Catal. 2014, 356, 1873.  doi: 10.1002/adsc.201300841

    12. [12]

      Zhou, W. J.; Wang, K. H.; Wang, J. X.; Huang, D. F. Eur. J. Org. Chem. 2010, 416.
       

    13. [13]

      Liu, W.; Tian, F.; Wang, X. L.; Yu, H.; Bi, Y. L. Chem. Commun. 2013, 49, 2983.  doi: 10.1039/c3cc40695d

    14. [14]

      Long, R. R.; Yan, X. F.; Wu, Z. Q.; Li, Z. K.; Xiang, H. F.; Zhou, X. G. Org. Biomol. Chem. 2015, 13, 3571.  doi: 10.1039/C5OB00132C

    15. [15]

      Edsall, R. J.; Harris, H. A.; Manas, E. S.; Mewshaw, R. E. Bioorg. Med. Chem. 2003, 11, 3457.  doi: 10.1016/S0968-0896(03)00303-1

    16. [16]

      So, C. M.; Chow, W. K.; Choy, P. Y.; Lau, C. P.; Kwong, F. Y. Chem. Eur. J. 2010, 16, 7996.  doi: 10.1002/chem.201000723

    17. [17]

      Perretti, M. D.; Monzon, D. M.; Crisostomo, F. P.; Martn, V. S.; Carrillo, R. Chem. Commun. 2016, 52, 9036.  doi: 10.1039/C5CC09911K

    18. [18]

      Duan, S. T.; Xu, Y. S.; Zhang, X. Y.; Fan, Y. S. Chem. Commun. 2016, 52, 10529.  doi: 10.1039/C6CC04756D

    19. [19]

      Zhao, F.; Luo, J. Y.; Tan, Q.; Liao, Y. F.; Peng, S. M.; Deng, G. J. Adv. Synth. Catal. 2012, 354, 1914.  doi: 10.1002/adsc.v354.10

    20. [20]

      Zhang, Y. G.; Liu, X. L.; He, Y. Z.; Li, X. M.; Kang, H. J.; Tian, S. K. Chem. Eur. J. 2014, 20, 2765.  doi: 10.1002/chem.v20.10

    21. [21]

      Yu, L.; Huang, Y. P.; Wei, Z.; Ding, Y. H.; Su, C. L.; Xu, Q. J. Org. Chem. 2015, 80, 8677.  doi: 10.1021/acs.joc.5b01358

    22. [22]

      Hong, F. J.; Low, Y. Y.; Chong, K. W.; Thomas, N. F.; Kam, T. S. J. Org. Chem. 2014, 79, 4528.  doi: 10.1021/jo500559r

    23. [23]

      Sagadevan, A.; Hwanga, K. C. Adv. Synth. Catal. 2012, 354, 3421.  doi: 10.1002/adsc.v354.18

    24. [24]

      Zhao, D. B.; Gao, C.; Su, X. Y.; He, Y. Q.; You, J. S.; Xue, Y. Chem. Commun. 2010, 46, 9049.  doi: 10.1039/c0cc03772a

    25. [25]

      Kim, T.; Jeong, K. H.; Kim, Y.; Noh, T.; Choi, J.; Ham, J. Eur. J. Org. Chem. 2017, 2425.

    26. [26]

      Jadhav, S. N.; Kumbhar, A. S.; Mali, S. S.; Hong, C. K.; Salunkhe, R. S. New J. Chem. 2015, 39, 2333.  doi: 10.1039/C4NJ02025A

  • 加载中
    1. [1]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    2. [2]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    3. [3]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    6. [6]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    7. [7]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    8. [8]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    9. [9]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    10. [10]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    11. [11]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    12. [12]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    13. [13]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    14. [14]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    15. [15]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    16. [16]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    17. [17]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    18. [18]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    19. [19]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    20. [20]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

Metrics
  • PDF Downloads(5)
  • Abstract views(3198)
  • HTML views(180)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return