Citation: Duanmu Dandan, Leong Pak-kin, Jiang Qibai, Yan Hong. Pd(Ⅱ)-Catalyzed Synthesis of Benzyl Benzoates via Benzyl C(sp3)-H Activation[J]. Chinese Journal of Organic Chemistry, ;2017, 37(10): 2669-2677. doi: 10.6023/cjoc201704040 shu

Pd(Ⅱ)-Catalyzed Synthesis of Benzyl Benzoates via Benzyl C(sp3)-H Activation

  • Corresponding author: Jiang Qibai, jiangqibai@163.com Yan Hong, hyan1965@nju.edu.cn
  • Received Date: 24 April 2017
    Revised Date: 22 June 2017
    Available Online: 4 October 2017

    Fund Project: the National Basic Research Program of China 2013CB922101the National Natural Science Foundation of China 21271102the National Natural Science Foundation of China 21472086Project supported by the National Basic Research Program of China (No. 2013CB922101) and the National Natural Science Foundation of China (Nos. 21271102, 21472086)

Figures(4)

  • An efficient Pd(Ⅱ)-catalyzed synthesis of benzyl benzoates via direct functionalization of benzyl C(sp3)-H bonds was developed. The method features a broad substrate scope. This method features high tolerance of functional groups, mild reaction condition, and high chemoselective when there are multiple active C(sp3)-H bonds. A plausible oxidative coupling mechanism was proposed on the basis of mechanistic studies.
  • 加载中
    1. [1]

      Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.  doi: 10.1021/cr900184e

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

      Li, H.; Li, B.-J.; Shi, Z.-J. Catal. Sci. Technol. 2011, 1, 191.  doi: 10.1039/c0cy00076k

    7. [7]

      (a) Chen, H.; Cai, C.; Liu, X.; Li, X.; Jiang, H. Chem. Commun. 2011, 47, 12224.
      (b) Liu, W. B.; Zheng, C.; Zhuo, C. X.; Dai, L. X.; You, S. L. J. Am. Chem. Soc. 2012, 134, 4812.
      (c) Li, Q.; Yu, Z. X. Organometallics 2012, 31, 5185.

    8. [8]

      Rakshit, S.; Patureau, F. W.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 9585.  doi: 10.1021/ja104305s

    9. [9]

      (a) Kharasch, M. S.; Fono, A. J. Org. Chem. 1958, 23, 324.
      (b) Kharasch, M. S.; Sosnovsky, G.; Yang, N. C. J. Am. Chem. Soc. 1959, 81, 5819.
      (c) Andrus, M. B.; Lashley, J. C. Tetrahedron 2002, 58, 845.
      (d) Eames, J.; Watkinson, M. Angew. Chem., Int. Ed. 2001, 40, 3567.
      (e) Malkov, A. V.; Bella, M.; Langer, V.; Kocovsky, P. Org. Lett. 2000, 2, 3047.
      (f) Andrus, M. B.; Zhou, Z. J. Am. Chem. Soc. 2002, 124, 8806.
      (g) Rispens, M. T.; Zondercu, C.; Feringa, B. L. Tetrahedron:Asymmetry 1995, 6, 661.

    10. [10]

      (a) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300.
      (b) Takahara, S.; Kitamura, A.; Sakuragi, H.; Tokumaru, K. Chem. Lett. 1983, 8, 1315.

    11. [11]

      (a) Li, Z.; Cao, L.; Li, C. J. Angew. Chem., Int. Ed. 2007, 46, 6505.
      (b) Pan, S.; Liu, J.; Li, Y.; Li Z. P. Chin. Sci. Bull. 2012, 57, 2382.
      (c) Xiong, T.; Li, Y.; Bi, X.; Lv, Y.; Zhang, Q. Angew. Chem., Int. Ed. 2011, 50, 7140.

    12. [12]

      Chen, C.; Xu, X.; Yang, B.; Qing, F. Org. Lett. 2014, 16, 3372.  doi: 10.1021/ol501400u

    13. [13]

      (a) Weaver, J. D.; Recio, A.; Grenning, A. J.; Tunge, J. A. Chem. Rev. 2011, 111, 1846.
      (b) Kuwano, R. Synthesis 2009, 1049.

    14. [14]

      (a) Evangelisti, C.; Schiavi, E.; Aronica, L. A.; Caporusso, A. M.; Vitulli, G.; Bertinietti, L.; Martra, G.; Balerna, A.; Mobilo, S. J. Catal. 2012, 286, 224.
      (b) Zhang, M. J.; Vedantham, P.; Flynn, D. L.; Hanson, P. R. J. Org. Chem. 2004, 69, 8340.

    15. [15]

      (a) Jovanovic, J.; Hengeveld, W.; Rebrov, E. V.; Nijhuis, T. A.; Hessel, V.; Schouten, J. C. Chem. Eng. Technol. 2011, 34, 1691.
      (b) Gathirwa, J. W.; Maki, T. Tetrahedron 2012, 68, 370.
      (c) Gok, Y. Alici, B.; Cetinkaya, E.; Ozdemir, I.; Ozeroglu, O.; Turk. J. Chem. 2010, 34, 187.

    16. [16]

      Werner, T.; Barrett, A. G. M. J. Org. Chem. 2006, 71, 4302.  doi: 10.1021/jo060562m

    17. [17]

      (a) Hao, W. Y.; Sha, J. C.; Sheng, S. R.; Cai, M. Z. Catal. Commun. 2008, 10, 257.
      (b) Salvadori, J.; Balducci, E.; Zara, S. Petricci, E.; Taddei, M. J. Org. Chem. 2010, 75, 1841.
      (c) Ramesh, C.; Nakamura, R.; Kubota, Y.; Miwa, M.; Sugi, Y. Synthesis 2003, 4, 501.

    18. [18]

      Su, X.-B.; Zhang, Q.-H.; Wu, Y.-Q.; Xu, J.-X. Chin. J. Org. Chem. 2002, 22, 496(in Chinese).  doi: 10.3321/j.issn:0253-2786.2002.07.006
       

    19. [19]

      Wu, T.; Mu, X.; Liu, G. Angew. Chem., Int. Ed. 2011, 50, 12578.  doi: 10.1002/anie.201104575

    20. [20]

      Wei, W.; Zhang, C.; Xu, Y.; Wan, X. Chem. Commun. 2011, 47, 10827.  doi: 10.1039/c1cc14602e

    21. [21]

      Liu, H.; Shi, G.; Pan, S.; Jiang, Y.; Zhang, Y. Org. Lett. 2013, 15, 4098.  doi: 10.1021/ol401687f

    22. [22]

      Sather, A. C.; Berryman, O. B.; Ajami, D.; Rebek, Jr. J. Tet-rahedron Lett. 2011, 52, 2100.  doi: 10.1016/j.tetlet.2010.11.030

    23. [23]

      Khan, K. M.; Maharvi, G. M.; Hayat, S.; Zia, U.; Choudhary, M. I.; Rahman, A. Tetrahedron 2003, 59, 5549.  doi: 10.1016/S0040-4020(03)00812-3

    24. [24]

      Shen, H.; Lu, X.; Jiang, K.; Yang, K.; Lu, Y.; Zheng, Z.; Lai, G.; Xu, L. Tetrahedron 2012, 68, 8916.  doi: 10.1016/j.tet.2012.08.024

    25. [25]

      Green, R. A.; Pletcher, D.; Leach, S. G.; Brown, R. C. D. Org. Lett. 2015, 17, 3290.  doi: 10.1021/acs.orglett.5b01459

    26. [26]

      Blaser, H.; Diggelmann, M.; Meier, H.; Naud, F.; Scheppach, E.; Schnyde, A.; Studer, M. J. Org. Chem. 2003, 68, 3725.  doi: 10.1021/jo034112v

    27. [27]

      Majji, G.; Guin, S.; Gogoi, A.; Rout, S. K.; Patel, B. K. Chem. Commun. 2013, 49, 3031.  doi: 10.1039/c3cc40832a

    28. [28]

      Curran, S. P.; Connon, S. J. Angew. Chem., Int. Ed. 2012, 51, 10866.  doi: 10.1002/anie.v51.43

    29. [29]

      Zhang, S.; Luo, F.; Wang, W.; Jia, X.; Hu, M.; Cheng, J. Tetrahedron Lett. 2010, 51, 3317.  doi: 10.1016/j.tetlet.2010.04.075

    30. [30]

      Tatamidani, H.; Yokota, K.; Kakiuchi, F.; Chatani, N. J. Org. Chem. 2004, 69, 5615.  doi: 10.1021/jo0492719

  • 加载中
    1. [1]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    4. [4]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    5. [5]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    6. [6]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    7. [7]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    8. [8]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    9. [9]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    10. [10]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    12. [12]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    13. [13]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    14. [14]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    15. [15]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    16. [16]

      Yufan Pan Xue Ding Jiayu Lin Haiting Wu Hairong Huang Cuixue Chen Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078

    17. [17]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    18. [18]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    19. [19]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    20. [20]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

Metrics
  • PDF Downloads(6)
  • Abstract views(1815)
  • HTML views(215)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return