Citation: Deng Yingying, Yang Wen, Yang Xin, Yang Dingqiao. Progress in Iridium-Catalyzed Asymmetric Allylic Substitution Reactions with Allylic Esters[J]. Chinese Journal of Organic Chemistry, ;2017, 37(12): 3039-3059. doi: 10.6023/cjoc201704034 shu

Progress in Iridium-Catalyzed Asymmetric Allylic Substitution Reactions with Allylic Esters

  • Corresponding author: Yang Dingqiao, yangdq@scnu.edu.cn
  • Received Date: 19 April 2017
    Revised Date: 21 June 2017
    Available Online: 11 December 2017

    Fund Project: the Natural Science Foundation of Guangdong Province S2013020013091the Science and Technology Plan Projects of Guangzhou Cit 201510010054the National Natural Science Foundation of China 21172081Project supported by the National Natural Science Foundation of China (Nos. 21172081, 21372090), the Natural Science Foundation of Guangdong Province (No. S2013020013091) and the Science and Technology Plan Projects of Guangzhou City (No. 201510010054)the National Natural Science Foundation of China 21372090

Figures(14)

  • Iridium-catalyzed asymmetric allylic substitution reaction is one of the most important methods for the synthesis of chiral compounds. The recent research progress in iridium-catalyzed asymmetric allylic substitution reactions of allylic ester and its derivatives is reviewed with focus on the influences of the iridium catalysts, the substrate structures of allylic ester and its derivatives, the type of nucleophiles, the effects of solvents and additives on asymmetric substitution reaction. Moreover, the possible mechanisms are also discussed in this review.
  • 加载中
    1. [1]

      (a) Liu, Z.-Q.; Du, H.-F. Org. Lett. 2010, 12, 3054.
      (b) Zhang, P.; Le, H.; Kyne, R. E.; Morken, J. P. J. Am. Chem. Soc. 2011, 133, 9716.
      (c) Suetsugu, S.; Nishiguchi, H.; Tsukano, C.; Takemoto, Y. Org. Lett. 2014, 16, 996.
      (d) Katcher, M. H.; Norrby, P. O.; Doyle, A. G. Organometallics 2014, 33, 2121.

    2. [2]

      (a) Hughes, D. L.; Lloyd-Jones, G. C.; Krska, S. W.; Gouriou, L.; Bonnet, V. D.; Jack, K.; Sun, Y.-K.; David, J. M.; Reamer, R. A. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5379.
      (b) Litto, R. D.; Benessere, V.; Ruffo, F.; Moberg, C. Eur. J. Org. Chem. 2009, 1352.

    3. [3]

      Moberg, C. Top Organomet. Chem. 2012, 38, 209.

    4. [4]

      (a) Jegelka, M.; Plietker, B. Org. Lett. 2009, 11, 3462.
      (b) Jegelka, M.; Plietker, B. Chem. Eur. J. 2011, 17, 10417.

    5. [5]

      (a) Trost, B. M.; Rao, M.; Dieskau, A. P. J. Am. Chem. Soc. 2013, 135, 18697.
      (b) Kawatsura, M.; Uchida, K.; Terasaki, S.; Tsuji, H.; Minakawa, M.; Itoh, T. Org. Lett. 2014, 16, 1470.

    6. [6]

      Tan, Z.-Z.; Wan, X.-L.; Zang, Z.-H.; Qian, Q.; Deng, W.; Gong, H.-G. Chem. Commun. 2014, 50, 3827.  doi: 10.1039/C3CC49859J

    7. [7]

      (a) Vrieze, D. C.; Hoge, G. S.; Hoerter, P. Z.; Van Haitsma, J. T.; Samas, B. M. Org. Lett. 2009, 11, 3140.
      (b) Arnold, J. S.; Nguyen, H. M. J. Am. Chem. Soc. 2012, 134, 8380.

    8. [8]

      (a) Yang, S.-C.; Feng, W.-H.; Gan, K.-H. Tetrahedron 2006, 62, 3752.
      (b) Zhang, M.; Watanabe, K. J.; Tsukamoto, M.; Shibuya, R.; Morimoto, H.; Ohshima, T. Chem.-Eur. J. 2015, 21, 1.

    9. [9]

      Guduguntla, S.; Hornillos, V.; Tessier, R.; Fañanás-Mastral, M.; Feringa, B. L. Org. Lett. 2016, 18, 252.  doi: 10.1021/acs.orglett.5b03396

    10. [10]

      Tosatti, P.; Nelson, A.; Marsden, S. P. Org. Biomol. Chem. 2012, 10, 3147.  doi: 10.1039/c2ob07086c

    11. [11]

      Zhuo, C.-X.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2014, 47, 2558.  doi: 10.1021/ar500167f

    12. [12]

      Hethcox, J. C.; Shockley, S. E.; Stoltz, B. M. ACS Catal. 2016, 6, 6207.  doi: 10.1021/acscatal.6b01886

    13. [13]

      Takeuchi, R.; Kashio, M. Angew. Chem., Int. Ed. 1997, 36, 263.  doi: 10.1002/(ISSN)1521-3773

    14. [14]

      Janssen, J. P.; Helmchen, G. Tetrahedron Lett. 1997, 38, 8025.  doi: 10.1016/S0040-4039(97)10220-9

    15. [15]

      Butt, N. A.; Zhang, W.-B. Chem. Soc. Rev. 2015, 44, 7929.  doi: 10.1039/C5CS00144G

    16. [16]

      Helmchen, G.; Dahnz, A.; Dubon, P.; Schelwies, M.; Weihofen, R. Chem. Commun. 2007, 675.
       

    17. [17]

      Wu, Y.-J.; Long, Y.-H.; Yang, D.-Q. Chin. J. Org. Chem. 2009, 29, 1522(in Chinese).
       

    18. [18]

      Giacomina, F.; Riat, D.; Alexakis, A. Org. Lett. 2010, 12, 1156.  doi: 10.1021/ol100162y

    19. [19]

      Stanley, L. M.; Bai, C.; Ueda, M.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 8918.  doi: 10.1021/ja103779e

    20. [20]

      Zhao, Z.-L.; Gu, Q.; Wu, X.-Y.; You, S.-L. Chin. Chem. Lett. 2016, 27, 619.  doi: 10.1016/j.cclet.2016.02.017

    21. [21]

      Bondzic, B. P.; Farwick, A.; Liebich, J.; Eilbracht, P. Org. Biomol. Chem. 2008, 6, 3723.  doi: 10.1039/b809143a

    22. [22]

      Liu, W.-B.; Zheng, S.-C.; He, H.; Zhao, X.-M.; Dai, L.-X.; You, S.-L. Chem. Commun. 2009, 6604.
       

    23. [23]

      Zhang, H.-B.; Chen, J.-T.; Zhao, X.-M. Org. Biomol. Chem. 2016, 14, 7183.  doi: 10.1039/C6OB01246A

    24. [24]

      Liu, W.-B.; Zheng, C.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. J. Am. Chem. Soc. 2012, 134, 4812.  doi: 10.1021/ja210923k

    25. [25]

      Xu, Q.-L.; Dai, L.-X.; You, S.-L. Adv. Synth. Catal. 2012, 354, 2275.  doi: 10.1002/adsc.v354.11/12

    26. [26]

      Zhan, M.; Li, R.-Z.; Mou, Z.-D.; Cao, C.-G.; Liu, J.; Chen, Y.-W.; Niu, D.-W. ACS Catal. 2016, 6, 3381.  doi: 10.1021/acscatal.6b00719

    27. [27]

      (a) Trost, B. M.; Jiang, C. H. Synthesis 2006, 369.
      (b) Behenna, D. C.; Stoltz, B. M. Top Organomet. Chem. 2013, 44, 281.

    28. [28]

      Chen, W.-Y.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 2068.  doi: 10.1021/ja311363a

    29. [29]

      Chen, W.-Y.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 377.  doi: 10.1021/ja410650e

    30. [30]

      Liu, W.-B.; Reeves, C. M.; Virgil, S. C.; Stoltz, B. M. J. Am. Chem. Soc. 2013, 135, 10626.  doi: 10.1021/ja4052075

    31. [31]

      Liu, W.-B.; Reeves, C. M.; Stoltz, B. M. J. Am. Chem. Soc. 2013, 135, 17298.  doi: 10.1021/ja4097829

    32. [32]

      Liu, W.-B.; Okamoto, N.; Alexy, E. J.; Hong, A. Y.; Tran, K.; Stoltz, B. M. J. Am. Chem. Soc. 2016, 138, 5234.  doi: 10.1021/jacs.6b02153

    33. [33]

      Liu, J.; Cao, C.-G.; Sun, H.-B.; Zhang, X.; Niu, D.-W. J. Am. Chem. Soc. 2016, 138, 13103.  doi: 10.1021/jacs.6b05288

    34. [34]

      (a) Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020.
      (b) Sandmeier, T.; Krautwald, S.; Zipfel, H. F.; Carreira, E. M. Angew. Chem., Int. Ed. 2015, 54, 14363.

    35. [35]

      (a) Yao, K.; Liu, D.-L.; Yuan, Q.-J.; Imamoto, T.; Liu, Y.-G.; Zhang, W.-B. Org. Lett. 2016, 18, 6296.
      (b) Huo, X.-H.; Yang, G.-Q.; Liu, D.-L.; Liu, Y.-G.; Gridnev, I. D.; Zhang, W.-B. Angew. Chem., Int. Ed. 2014, 53, 6776.

    36. [36]

      Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065.  doi: 10.1126/science.1237068

    37. [37]

      Wei, X.; Liu, D.-L.; An, Q.-J.; Zhang, W.-B. Org. Lett. 2015, 17, 5768.  doi: 10.1021/acs.orglett.5b02868

    38. [38]

      Liu, W.-B.; He, H.; Dai, L.-X.; You, S.-L. Org. Lett. 2008, 10, 1815.  doi: 10.1021/ol800409d

    39. [39]

      Zhou, C.-X.; Wu, Q.-F.; Zhou, Q.; Xu, Q.-L.; You, S.-L. J. Am. Chem. Soc. 2013, 135, 8169.  doi: 10.1021/ja403535a

    40. [40]

      Zhuo, C.-X.; Cheng, Q.; Liu, W.-B.; Zhao, Q.; You, S.-L. Angew. Chem., Int. Ed. 2015, 54, 8475.  doi: 10.1002/anie.201502259

    41. [41]

      Wu, Q.-F.; Liu, W.-B.; Zhuo, C.-X.; Rong, Z.-Q.; Ye, K.-Y.; You, S.-L. Angew. Chem., Int. Ed. 2011, 50, 4455.  doi: 10.1002/anie.201100206

    42. [42]

      Xu, Q.-L.; Dai, L.-X.; You, S.-L. Org. Lett. 2012, 14, 2579.  doi: 10.1021/ol3008793

    43. [43]

      Cheng, Q.; Wang, Y.; You, S.-L. Angew. Chem., Int. Ed. 2016, 55, 3496.  doi: 10.1002/anie.201511519

    44. [44]

      Chen, W.-Y.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 15249.  doi: 10.1021/ja306850b

    45. [45]

      Chen, W.-Y.; Chen, M.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 15825.  doi: 10.1021/ja506500u

    46. [46]

      Chen, M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2014, 53, 8691.  doi: 10.1002/anie.201403844

    47. [47]

      Chen, M.; Hartwig, J. F. J. Am. Chem. Soc. 2015, 137, 13972.  doi: 10.1021/jacs.5b09980

    48. [48]

      Chen, M.:Hartwig, J. F. Angew. Chem., Int. Ed. 2014, 53, 12172.  doi: 10.1002/anie.201406778

    49. [49]

      Chen, M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2016, 55, 11651.  doi: 10.1002/anie.201607053

    50. [50]

      Jiang, X.-Y.; Chen, W.-Y.; Hartwig, J. F. Angew. Chem., Int. Ed. 2016, 55, 5819.  doi: 10.1002/anie.201600235

    51. [51]

      Alexakis, A.; Hajjaji, S. E.; Polet, D.; Rathgeb, X. Org. Lett. 2007, 9, 3393.  doi: 10.1021/ol0713842

    52. [52]

      Polet, D.; Rathgeb, X.; Falciola, C. A.; Langlois, J. B.; Hajjaji, S. E.; Alexakis, A. Chem. Eur. J. 2009, 15, 1205.  doi: 10.1002/chem.200801879

    53. [53]

      Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. Angew. Chem., Int. Ed. 2015, 54, 7644.  doi: 10.1002/anie.201501851

    54. [54]

      Liu, X.-J.; You, S.-L. Angew. Chem., Int. Ed. 2017, 56, 4002.  doi: 10.1002/anie.201700433

    55. [55]

      Breitler, S.; Carreira, E. M. J. Am. Chem. Soc. 2015, 137, 5296.  doi: 10.1021/jacs.5b01951

    56. [56]

      Pouy, M. J.; Leitner, A.; Weix, D. J.; Ueno, S.; Hartwig, J. F. Org. Lett. 2007, 9, 3949.  doi: 10.1021/ol701562p

    57. [57]

      Pouy, M. J.; Stanley, L. M.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 11312.  doi: 10.1021/ja905059r

    58. [58]

      Weihofen, R.; Tverskoy, O.; Helmchen, G. Angew. Chem., Int. Ed. 2006, 45, 5546.  doi: 10.1002/(ISSN)1521-3773

    59. [59]

      Spiess, S.; Berthold, C.; Weihofen, R.; Helmchen, G. Org. Biomol. Chem. 2007, 5, 2357.  doi: 10.1039/B708571K

    60. [60]

      Weix, D. J.; Markovic, D.; Ueda, M.; Hartwig, J. F. Org. Lett. 2009, 11, 2944.  doi: 10.1021/ol901151u

    61. [61]

      Markovic, D.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 11680.  doi: 10.1021/ja074584h

    62. [62]

      Ye, K.-Y.; Dai, L.-X.; You, S.-L. Org. Biomol. Chem. 2012, 10, 5932.  doi: 10.1039/c2ob00036a

    63. [63]

      Ye, K.-Y.; Dai, L.-X.; You, S.-L. Chem. Eur. J. 2014, 20, 3040.  doi: 10.1002/chem.201400026

    64. [64]

      Stanley, L. M.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 8971.  doi: 10.1021/ja902243s

    65. [65]

      Liu, W.-B.; Zhang, X.; Dai, L.-X.; You, S.-L. Angew. Chem., Int. Ed. 2012, 51, 5183.  doi: 10.1002/anie.201200649

    66. [66]

      Yang, Z.-P.; Wu, Q.-F.; You, S.-L. Angew. Chem., Int. Ed. 2014, 53, 6986.  doi: 10.1002/anie.201404286

    67. [67]

      Zhang, X.; Yang, Z.-P.; Huang, L.; You, S.-L. Angew. Chem., Int. Ed. 2015, 54, 1873  doi: 10.1002/anie.201409976

    68. [68]

      Yang, Z.-P.; Wu, Q.-F.; Shao, W.; You, S.-L. J. Am. Chem. Soc. 2015, 137, 15899.  doi: 10.1021/jacs.5b10440

    69. [69]

      Zhuo, C.-X.; Zhang, X.; You, S.-L. ACS Catal. 2016, 6, 5307.  doi: 10.1021/acscatal.6b01585

    70. [70]

      Ye, K.-Y.; Cheng, Q.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. Angew. Chem., Int. Ed. 2016, 55, 8113.  doi: 10.1002/anie.201603266

    71. [71]

      Yang, Z.-P.; Zheng, C.; Huang, L.; Qian, C.; You, S.-L. Angew. Chem., Int. Ed. 2017, 56, 1530.  doi: 10.1002/anie.201611056

    72. [72]

      Miyabe, H.; Yoshida, K.; Reddy, V. K.; Takemoto, Y. J. Org. Chem. 2009, 74, 305.  doi: 10.1021/jo802271d

    73. [73]

      Gärtner, M.; Jäkel, M.; Achatz, M.; Sonnenschein, C.; Tverskoy, O.; Helmchen, G. Org. Lett. 2011, 13, 2810.  doi: 10.1021/ol200688d

    74. [74]

      Lee, J.-H.; Lee, S.-G. Chem. Sci. 2013, 4, 2922.  doi: 10.1039/c3sc50901j

    75. [75]

      Satyanarayana, G.; Helmchen, G. Eur. J. Org. Chem. 2014, 2242.

    76. [76]

      Grange, R. L.; Clizbe, E. A.; Counsell, E. J.; Evans, A. P. Chem. Sci. 2015, 6, 777.  doi: 10.1039/C4SC01317D

    77. [77]

      Kimura, M.; Uozumi, Y. J. Org. Chem. 2007, 72, 707.  doi: 10.1021/jo0615403

    78. [78]

      He, H.; Ye, K.-Y.; Wu, Q.-F.; Dai, L.-X.; You, S.-L. Adv. Synth. Catal. 2012, 354, 1084.  doi: 10.1002/adsc.201100809

    79. [79]

      Qu, J.-P.; Roβberg, L.; Helmchen, G. J. Am. Chem. Soc. 2014, 136, 1272.  doi: 10.1021/ja411869r

    80. [80]

      Zhao, D.-P.; Martin, F. M.; Chang, M.-C.; Otten, E.; Feringa, B. L. Chem. Sci. 2014, 5, 4216.  doi: 10.1039/C4SC01940G

    81. [81]

      Zheng, S.-C.; Zhang, M.; Zhao. X.-M. Chem. Eur. J. 2014, 20, 1.  doi: 10.1002/chem.201390210

    82. [82]

      Zhang, M.; Zheng, S.-C.; Zhao, X.-M. Chem. Commun. 2014, 50, 4455.  doi: 10.1039/c4cc00413b

    83. [83]

      Gärtner, M.; Mader, S.; Seehafer, K.; Helmchen, G. J. Am. Chem. Soc. 2011, 133, 2072.  doi: 10.1021/ja109953v

    84. [84]

      Xu, Q.-L.; Dai, L.-X.; You, S.-L. Org. Lett. 2010, 12, 800.  doi: 10.1021/ol902873q

    85. [85]

      Ueda, M.; Hartwing, J. F. Org. Lett. 2010, 12, 92.  doi: 10.1021/ol9023248

    86. [86]

      Liu, W.; Zhao, X.-M.; Zhang, H.-B.; Zhang, L.; Zhao, M.-Z. Chem. Eur. J. 2014, 20, 16873.  doi: 10.1002/chem.201405058

    87. [87]

      Zheng, S.-C.; Gao, N.; Liu, W.; Liu, D.-G.; Zhao, X.-M.; Cohen, T. Org. Lett. 2010, 12, 4454.  doi: 10.1021/ol101915b

    88. [88]

      Zheng, S.-C.; Huang, W.-Q.; Gao, N.; Cui, R.-M.; Zhang, M.; Zhao, X.-M. Chem. Commum. 2011, 47, 6969.  doi: 10.1039/c1cc11930c

    89. [89]

      Huang, W.-Q.; Zheng, S.-C.; Tang, J.-L.; Zhao, X.-M. Org. Biomol. Chem. 2011, 9, 7897.  doi: 10.1039/c1ob06332d

    90. [90]

      Gao, N.; Zhao, X.-M. Eur. J. Org. Chem. 2013, 2708.

    91. [91]

      Topczewski, J. J.; Tewson, T. J.; Nguyen, H. M. J. Am. Chem. Soc. 2011, 133, 19318.  doi: 10.1021/ja2087213

    92. [92]

      Zhang, Q.; Stockdale, D. P.; Mixdorf, J. C.; Topczewski, J. J.; Nguyen, H. M. J. Am. Chem. Soc. 2015, 137, 11912.  doi: 10.1021/jacs.5b07492

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    3. [3]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    4. [4]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    5. [5]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    6. [6]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    7. [7]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    9. [9]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    10. [10]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    11. [11]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    12. [12]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    14. [14]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    15. [15]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    16. [16]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    17. [17]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    18. [18]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    19. [19]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    20. [20]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

Metrics
  • PDF Downloads(56)
  • Abstract views(5684)
  • HTML views(677)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return