Citation: Li Xiuming, Jia Xueshun, Yin Liang. Recent Progress on Post-Ugi Reaction[J]. Chinese Journal of Organic Chemistry, ;2017, 37(9): 2237-2249. doi: 10.6023/cjoc201704026 shu

Recent Progress on Post-Ugi Reaction

  • Corresponding author: Jia Xueshun, xsjia@mail.shu.edu.cn Yin Liang, liangyin@sioc.ac.cn
  • Received Date: 17 April 2017
    Revised Date: 19 May 2017
    Available Online: 24 September 2017

    Fund Project: the National Natural Science Foundation of China 21472121Project supported by the National Natural Science Foundation of China (No. 21472121)

Figures(26)

  • Ugi reaction is an effective and atom-economical multicomponent reaction. The sequences of Ugi multicomponent reactions and following various postcondensation transformations constitute an extremely powerful synthetic method for heterocyclic compounds with elaborate substitution patterns. Herein, the development in this field is summarized.
  • 加载中
    1. [1]

      Tzitzikas, T. Z.; Chandgude, A. L.; Dömling, A. Chem. Rec. 2015, 15, 981.  doi: 10.1002/tcr.v15.5

    2. [2]

      Ruijter, E.; Scheffelaar, R.; Orru, R. V. A. Angew. Chem., Int. Ed. 2011, 50, 6234.  doi: 10.1002/anie.201006515

    3. [3]

      Zhu, J. P.; Wang, Q.; Wang, M. X. Multicomponent Reaction in Organic Synthesis, Wiley-VCH, Weinheim, 2015.

    4. [4]

      Dömling, A.; Wang, W.; Wang, K. Chem. Rev. 2012, 112, 3083.  doi: 10.1021/cr100233r

    5. [5]

      Benjamin, H. R.; Zaretsky, S.; Rai, V.; Yudin, K. A. Chem. Rev. 2014, 114, 8323.  doi: 10.1021/cr400615v

    6. [6]

      Tang, Z.; Liu, Z.; An, Y.; Jiang, R.; Zhang, X.; Li, C.; Jia. X. J.Org. Chem. 2016, 81, 9158.  doi: 10.1021/acs.joc.6b01711

    7. [7]

      Ugi, I.; Meyr, R.; Fetzer, U. Angew. Chem. 1959, 71, 386.

    8. [8]

      Váradi, A.; Palmer, T. C.; Dardashti, R. N.; Majumdar, S. Molecules 2016, 21, 19.

    9. [9]

      Hu, H.; Li, A.; Zhang, H.; Shi, D. Chin. J. Org. Chem. 2015, 35, 2162(in Chinese).
       

    10. [10]

      Zhan, Y.; Wang, B.; Zhang, L.; Zhang, Y.; Zhang, X.; Li, Z.; Song, H. Acta Chim. Sinica 2015, 73, 1173(in Chinese).
       

    11. [11]

      Xiao, L.; Peng, X.; Zhou, Q.; Kou, W.; Shi, Y. Chin. J. Org. Chem. 2015, 35, 1204(in Chinese).
       

    12. [12]

      Dömling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168.  doi: 10.1002/(ISSN)1521-3773

    13. [13]

      Sadjadi, S.; Heravi, M. M.; Nazarib, N. RSC Adv. 2016, 6, 53203.  doi: 10.1039/C6RA02143C

    14. [14]

      Haji, M. Beilstein J. Org. Chem. 2016, 12, 1269.  doi: 10.3762/bjoc.12.121

    15. [15]

      Wang, Y.; Liu, Z.; Tang, C.; Bi, X. J. Mol. Sci. 2016, 32, 1(in Chinese).
       

    16. [16]

      Zhang, Z.; Zheng, X.; Guo, C. Chin. J. Org. Chem. 2016, 36, 1241(in Chinese).
       

    17. [17]

      Ugi, I. Angew. Chem. 1961, 74, 9.

    18. [18]

      Nixey, T.; Kelly, M.; Hulme, C. Tetrahedron Lett. 2000, 41, 8729.  doi: 10.1016/S0040-4039(00)01563-X

    19. [19]

      Nixey, T.; Kelly, M.; Semin, D.; Hulme, C. Tetrahedron Lett. 2002, 43, 3681.  doi: 10.1016/S0040-4039(02)00636-6

    20. [20]

      Nayak, M.; Batra, S. Tetrahedron Lett. 2010, 51, 510.  doi: 10.1016/j.tetlet.2009.11.051

    21. [21]

      Nixey, T.; Kelly, M.; Hulme, C. Tetrahedron Lett. 2000, 41, 8729.  doi: 10.1016/S0040-4039(00)01563-X

    22. [22]

      Kalinski, C.; Umkehrer, M.; Gonnard, S.; Jager, N.; Ross, G.; Hillerb, W. Tetrahedron Lett. 2006, 47, 2041.  doi: 10.1016/j.tetlet.2006.01.027

    23. [23]

      Yerande, S. G.; Newase, K. M.; Singh, B.; Boltjes, A.; Dömling, A. Tetrahedron Lett. 2014, 55, 3263.  doi: 10.1016/j.tetlet.2014.04.040

    24. [24]

      Borisov, R. S.; Polyakov, A. I.; Medvedeva, L. A.; Khrustalev, V. N.; Guranova, N. I.; Voskressensky, L. G. Org. Lett. 2010, 12, 3894.  doi: 10.1021/ol101590w

    25. [25]

      Shmatova, O. I.; Nenajdenko, V. G. Eur. J. Org. Chem. 2013, 6397.

    26. [26]

      Shmatova, O. I.; Nenajdenko, V. G. J. Org. Chem. 2013, 78, 9214.  doi: 10.1021/jo401428q

    27. [27]

      Mikaimi, K.; Lautens, M. New Frontiers in Asymmetric Catalysis, Wiley, New York, 2007.

    28. [28]

      Ugi, I.; Rosendahl, F. K. Justus Liebigs Ann. Chem. 1963, 666, 65.  doi: 10.1002/(ISSN)1099-0690

    29. [29]

      Shevchenko, N. E.; Nenajdenko, V. G.; Röschenthaler, G.-V. J. Fluorine Chem. 2008, 129, 390.  doi: 10.1016/j.jfluchem.2008.01.013

    30. [30]

      Nenajdenko, V. G.; Zakurdaev, E. P.; Prusov, E. V.; Balenkova, E. S. Tetrahedron 2004, 60, 11719.  doi: 10.1016/j.tet.2004.10.006

    31. [31]

      Kroon, E.; Kurpiewska, K.; Kalinowska-Tłusćik, J.; Dömling, A. Org. Lett. 2016, 18, 4762.  doi: 10.1021/acs.orglett.6b01826

    32. [32]

      Nutt, R. F.; Joullié, M. M. J. Am. Chem. Soc. 1982, 104, 5852.  doi: 10.1021/ja00385a080

    33. [33]

      Flanagan, D. M.; Joullié, M. M. Synth. Commun. 1989, 19, 1.  doi: 10.1080/00397918908050946

    34. [34]

      Katsuyama, A.; Matsuda, A.; Ichikawa, S. Org. Lett. 2016, 18, 2552  doi: 10.1021/acs.orglett.6b00827

    35. [35]

      Banfi, L.; Basso, A.; Guanti, G.; Riva, R. Tetrahedron Lett. 2004, 45, 6637.  doi: 10.1016/j.tetlet.2004.07.015

    36. [36]

      Hua, D. H.; Miao, S. W.; Bharathi, S. N.; Katsuhira, T.; Bravo, A. A. J. Org. Chem. 1990, 55, 3682.  doi: 10.1021/jo00298a062

    37. [37]

      Golubev, P.; Bakulina, O.; Darin, D.; Krasavin, M. Eur. J. Org. Chem. 2016, 3969.

    38. [38]

      Morana, F.; Basso, A.; Bella, M.; Riva, R.; Banfi, L. Adv. Synth. Catal. 2012, 354, 2199.  doi: 10.1002/adsc.v354.11/12

    39. [39]

      Chapman, T. M.; Davies, I. G.; Gu, B.; Block, T. M.; Scopes, D. I. C.; Hay, P. A.; Courtney, S. M.; McNeill, L. A.; Schofield, C. J.; Davis, B. G. J. Am. Chem. Soc. 2005, 127, 506.  doi: 10.1021/ja043924l

    40. [40]

      Znabet, A.; Ruijter, E.; de Kanter, F. J. J.; Kohler, V.; Helliwell, M.; Turner, N. J.; Orru, R. V. A. Angew. Chem., Int. Ed. 2010, 49, 5289.  doi: 10.1002/anie.v49:31

    41. [41]

      Li, X.-C. Ph.D. Dissertation, Nanjing University, Nanjing, 2011(in Chinese).

    42. [42]

      Nenajdenko, V. G.; Gulevich, A. V.; Sokolova, N. V.; Mironov, A. V.; Balenkova. E. S. Eur. J. Org. Chem. 2010, 1445.

    43. [43]

      Vorobyeva, D. V.; Sokolova, N. V.; Nenajdenko, V. G., Peregudov, A. S.; Osipov, S. N. Tetrahedron 2012, 68, 872.  doi: 10.1016/j.tet.2011.11.037

    44. [44]

      Pramitha, P.; Bahulayan, D. Bioorg. Med. Chem. Lett. 2012, 22, 2598.  doi: 10.1016/j.bmcl.2012.01.111

    45. [45]

      Niu, T. F.; Gu, L.; Yi, W. B.; Cai, C. ACS Comb. Sci. 2012, 14, 309.  doi: 10.1021/co3000117

    46. [46]

      Shin, S. B. Y.; Yoo, B.; Todaro, L. J.; Kirshenbaum, K. J. Am. Chem. Soc. 2007, 129, 3218.  doi: 10.1021/ja066960o

    47. [47]

      Pirali, T.; Tron, G. C.; Zhu, J. Org. Lett. 2006, 8, 4145.  doi: 10.1021/ol061782p

    48. [48]

      Samarasimhareddy, M.; Hemantha, H. P.; Sureshbabu, V. V. Tetrahedron Lett. 2012, 53, 3104.  doi: 10.1016/j.tetlet.2012.04.034

    49. [49]

      Salvador, C. E. M.; Pieber, B.; Neu, P. M.; Torvisco, A.; Andrade, C. K. Z.; Kappe, C. O. J. Org. Chem. 2015, 80, 4590.  doi: 10.1021/acs.joc.5b00445

    50. [50]

      Xu, Z.; Moliner, F. D.; Cappelli, A. P.; Hulme, C. Angew. Chem., Int. Ed. 2012, 51, 8037.  doi: 10.1002/anie.v51.32

    51. [51]

      Xu, Z.; Moliner, F. D.; Cappelli, A. P.; Hulme, C. Org. Lett. 2013, 15, 2738.  doi: 10.1021/ol401068u

    52. [52]

      Zeng, X.; Wang, H.; Ding, M. Org. Lett. 2015, 17, 2234.  doi: 10.1021/acs.orglett.5b00849

    53. [53]

      Che, C.; Li, S.; Jiang, X.; Quan, J.; Lin, S.; Yang, Z. Org. Lett. 2010, 20, 4682.

    54. [54]

      Santra, S.; Andreana, P. R. Angew. Chem., Int. Ed. 2011, 50, 9418.  doi: 10.1002/anie.v50.40

    55. [55]

      Santra, S.; Andreana, P. R. J. Org. Chem. 2011, 76, 2261.  doi: 10.1021/jo102305q

    56. [56]

      Hartung, A.; Seufert, F.; Berges, C.; Gessner. V. H.; Holzgrabe, U. Molecules 2012, 17, 14685.  doi: 10.3390/molecules171214685

    57. [57]

      Yugandhar, D.; Kuriakose, S.; Nanubolu, J. B.; Srivastava, A. K. Org. Lett. 2016, 18, 1040.  doi: 10.1021/acs.orglett.6b00164

    58. [58]

      Li, Z.; Zhao, Y.; Tian, G.; Yi, H.; Song, G.; Meerveltc, L. V.; Eycken, E. V. V. RSC Adv. 2016, 6, 103601.  doi: 10.1039/C6RA23180B

    59. [59]

      Bonnaterre, F.; Bois-Choussy, M.; Zhu, J. Org. Lett. 2006, 19, 4351.

    60. [60]

      Sharma, N.; Li, Z.; Sharma, U. K.; Van der Eycken, E. V. Org. Lett. 2014, 16, 3884.  doi: 10.1021/ol5019079

    61. [61]

      Asthana, M.; Sharma, N.; Singh, M. R. Tetrahedron 2014, 70, 7996.  doi: 10.1016/j.tet.2014.08.046

    62. [62]

      Peshkov, A. A.; Peshkov, V. A.; Pereshivko, O. P.; Van der Eycken, E. V. Tetrahedron 2015, 71, 3863.  doi: 10.1016/j.tet.2015.04.022

    63. [63]

      He, P.; Nie, Y. B.; Wu, J.; Ding, M. W. Org. Biomol. Chem. 2011, 9, 1429.  doi: 10.1039/c0ob00855a

    64. [64]

      Zhong, Y.; Wang, L.; Ding, M.-W. Tetrahedron 2011, 67, 3714.  doi: 10.1016/j.tet.2011.03.056

    65. [65]

      Duan, Z.; Gao, Y.; Yuan, D.; Ding, M. W. Synlett 2015, 26, 2598.  doi: 10.1055/s-00000083

    66. [66]

      Beck, B.; Picard, A.; Herdtweck, E.; Dömling, A. Org. Lett. 2004, 1, 39.

    67. [67]

      Ramazani, A.; Rezaei, A. Org. Lett. 2010, 12, 2852.  doi: 10.1021/ol100931q

    68. [68]

      Wang, L.; Ren, Z.; Ding, M. J. Org. Chem. 2015, 80, 641.  doi: 10.1021/jo502275f

    69. [69]

      Welsch, S. J.; Umkehrer, M.; Kalinski, C.; Ross, G.; Burdack, C.; Kolb, J.; Wild, M.; Ehrlich, A.; Wessjohann, L. A. Tetrahedron Lett. 2015, 56, 1025.  doi: 10.1016/j.tetlet.2015.01.043

    70. [70]

      Yan, Y.-M.; Gao, Y.; Ding, M. W. Tetrahedron 2016, 72, 5548.  doi: 10.1016/j.tet.2016.07.048

    71. [71]

      Furstner, A. Chem. Soc. Rev. 2009, 38, 3208.  doi: 10.1039/b816696j

    72. [72]

      Bandini, M.; Bottoni, A.; Chiarucci, M.; Cera, G.; Miscione, G. P. J. Am. Chem. Soc. 2012, 134, 20690.  doi: 10.1021/ja3086774

    73. [73]

      Vachhani, D. D.; Mehta, V. P.; Modha, S. G.; Van Hecke, K.; Van Meervelt, L.; Van der Eycken, E. V. Adv. Synth. Catal. 2012, 354, 1593.  doi: 10.1002/adsc.201100881

    74. [74]

      Kumar, A.; L. Z.; Sharma, S. K.; Parmar, V. S.; Van der Eycken, E. V. Org. Lett. 2013, 8, 1874.

    75. [75]

      Bischler, A.; Napieralski, B. Chem. Ber. 1893, 26, 1903.  doi: 10.1002/(ISSN)1099-0682

    76. [76]

      Ho, G. D.; Seganish, W. M.; Bercovici, A.; Tulshian, D.; Greenlee, W. J.; Van Rijn, R.; Hruza, A.; Xiao, L.; Rindgen, D.; Mullins, D.; Guzzi, M.; Zhang, X.; Bleickardt, C.; Hodgson, R. Bioorg. Med. Chem. Lett. 2012, 22, 2585.  doi: 10.1016/j.bmcl.2012.01.113

    77. [77]

      Silvani, A.; Lesma, G.; Crippa, S.; Vece, V. Tetrahedron 2014, 70, 3994.  doi: 10.1016/j.tet.2014.04.081

    78. [78]

      Hebach, C.; Kazmaier, U. Chem. Commun. 2003, 596.

    79. [79]

      Banfi, L.; Basso, A.; Giardini, L.; Riva, R.; Rocca, V.; Guanti, G. Eur. J. Org. Chem. 2011, 100.

    80. [80]

      Shi, J.; Wu, J.; Cui, C.; Dai, W.-M. J.Org. Chem. 2016, 81, 10392.  doi: 10.1021/acs.joc.6b01398

    81. [81]

      Banfi, L.; Basso, A.; Guanti, G.; Lecinska, P.; Riva, R. Org. Biomol. Chem. 2006, 4, 4236.  doi: 10.1039/b613056a

    82. [82]

      Cheng, G.; He, X.; Tian, L.; Chen, J.; Li, C.; Jia, X.; Li, J. J. Org. Chem. 2015, 80, 11100.  doi: 10.1021/acs.joc.5b01724

    83. [83]

      Liu, H.; Domling, A. J. Org. Chem. 2009, 74, 6895.  doi: 10.1021/jo900986z

  • 加载中
    1. [1]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    2. [2]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    3. [3]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    4. [4]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    5. [5]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    8. [8]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    9. [9]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    10. [10]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    11. [11]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    12. [12]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    13. [13]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    14. [14]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    15. [15]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    16. [16]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    17. [17]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    18. [18]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    19. [19]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    20. [20]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

Metrics
  • PDF Downloads(63)
  • Abstract views(6904)
  • HTML views(2408)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return