Citation: Liu Teng, Liu Jianjun, He Chixian, Cheng Feixiang. Recent Progress on Polyconjugated Nitrodienynes/Nitroenynes:Synthesis and Applications[J]. Chinese Journal of Organic Chemistry, ;2017, 37(10): 2609-2618. doi: 10.6023/cjoc201704024 shu

Recent Progress on Polyconjugated Nitrodienynes/Nitroenynes:Synthesis and Applications

  • Corresponding author: Liu Teng, liut_yqzhin@mail.qjnu.edu.cn
  • Received Date: 13 April 2017
    Revised Date: 23 May 2017
    Available Online: 2 October 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21261019)the National Natural Science Foundation of China 21261019

Figures(12)

  • Polyconjugated nitrodienynes/nitroenynes as nitroolefin derivatives are good kind of electrophiles and have been widely used in organic synthesis. There are multiple reaction sites due to the conjugated system. Therefore, competitive reactions of regioselectivity in the reaction process are existence, such as 1, 4-addition reaction, 1, 6-addition reaction, and even 1, 8-addition reaction. The recent progress of the synthesis of nitrodienynes/nitroenynes and their applications in organic synthesis are summarized.
  • 加载中
    1. [1]

      (a) Yang, Z.; Liu, J.; Liu, X.; Wang, Z.; Feng, X.; Su, Z.; Hu, C. Adv. Synth. Catal. 2008, 350, 2001.
      (b) Mandal, T.; Zhao, C. Angew. Chem., Int. Ed. 2008, 47, 7714.
      (c) Xue, F.; Zhang, S.; Duan, W.; Wang, W. Adv. Synth. Catal.2008, 350, 2194.
      (d) Gu, Q.; Guo, X.; Wu, X. Tetrahedron 2009, 65, 5265.
      (e) Morris, D. J.; Partridge, A. S.; Manville, C. V.; Racys, D. T.; Woodward, G.; Docherty, G.; Wills, M. Tetrahedron Lett. 2010, 51, 209.
      (f) Peng, L.; Xu, X.; Wang, L.; Huang, J.; Bai, J.; Huang, Q.; Wang, L. Eur.J. Org. Chem. 2010, 1849.
      (g) Lu, A.; Liu, T.; Wu, R.; Wang, Y.; Zhou, Z.; Wu, G.; Fang, J.; Tang, C. Eur.J. Org. Chem. 2010, 5777.
      (h) Lu, A.; Liu, T.; Wu, R.; Wang, Y.; Wu, G.; Zhou, Z.; Fang, J.; Tang, C. J.Org. Chem. 2011, 76, 3872.
      (i) Jiang, X.; Zhang, Y.; Chan, A. S. C.; Wang, R. Org. Lett. 2009, 11, 153.
      (j) Rasappan, R.; Reiser, O. Eur. J. Org. Chem. 2009, 1305.
      (k) Kokotos, C. G.; Kokotos, G. Adv. Synth. Catal. 2009, 351, 1355.
      (l) Li, B.; Wang, Y.; Luo, S.; Zhong, A.; Li, Z.; Du, X.; Xu, D. Eur. J.Org. Chem. 2010, 656.
      (m) Sun, Z.-W.; Peng, F.-Z.; Li, Z.-Q.; Zou, L.-W.; Zhang, S.-X.; Li, X.; Shao, Z.-H. J. Org. Chem. 2012, 77, 4103.

    2. [2]

      For selected reviews, see: (a) Berner, O. M.; Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 2002, 1877.
      (b) Almasi, D.; Alonso, D. A.; Najera, C. Tetrahedron: Asymmetry 2007, 18, 299.
      (c) Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 1701.
      (d) Sulzer-Mosse, S.; Alexakis, A. Chem. Commun. 2007, 3123.
      (e) Vicario, J. L.; Badía, D.; Carrillo, L. Synthesis 2007, 2065.
      (f) Tsakos, M.; Kokotos, C. G. Tetrahedron 2013, 69, 10199.

    3. [3]

      (a) Ma, H.; Liu, K.; Zhang, F.-G.; Zhu, C.-L.; Nie, J.; Ma, J.-A. J. Org. Chem. 2010, 75, 1402.
      (b) Betancort, J. M.; Sakthivel, K.; Thayumanavan, R.; Tanaka, F.; Barbas Ⅲ, C. F. Synthesis 2004, 1509.

    4. [4]

      Palomo, C.; Vera, S.; Mielgo, A.; Gomez-Bengoa, E. Angew. Chem., Int. Ed. 2006, 45, 5984.  doi: 10.1002/(ISSN)1521-3773

    5. [5]

      Bonne, D.; Salat, L.; Dulcère, J.-P.; Rodriguez, J. Org. Lett. 2008, 10, 5409.  doi: 10.1021/ol8023133

    6. [6]

      Corey, E. J.; Zhang, F. Org. Lett. 2000, 2, 4257.  doi: 10.1021/ol0068344

    7. [7]

      Ballini, R.; Araújo, N.; Gil, M. V.; Román, E.; Serrano J. A. Chem. Rev. 2013, 113, 3493.  doi: 10.1021/cr2002195

    8. [8]

      Li, X.; Peng, F.; Zhou, M.; Mo, M.; Zhao, R.; Shao, Z. Chem. Commun. 2014, 50, 1745.  doi: 10.1039/C3CC48951E

    9. [9]

      (a) Sonogashira, K. Metal-Catalyzed Cross-Coupling Reactions, Eds.: Diederich, F.; Stang, P. J., Wiley-VCH, Weinheim, 1997, p. 203.
      (b) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 50, 4467.
      (c) Stephens, R. D.; Castro, C. E. J. Org. Chem. 1963, 28, 2163.

    10. [10]

      (a) Akiyama, T.; Takada, K.; Oikawa, T.; Matsuura, N.; Ise, Y.; Okada, S.; Matsunaga, S. Tetrahedron 2013, 69, 6560.
      (b) Iverson, S. L.; Uetrecht, J. P. Chem. Res. Toxicol. 2001, 14, 175.

    11. [11]

      (a) Zhang, W.; Zheng, S.; Liu, N.; Werness, J. B.; Guzei, I. A.; Tang, W. J. Am. Chem. Soc. 2010, 132, 3664.
      (b) Werness, J. B.; Tang, W. Org. Lett. 2011, 13, 3664.

    12. [12]

      Sun, Z.; Zhou, M.; Li, X.; Meng, X.; Peng, F.; Zhang, H.; Shao, Z. Chem. Eur. J. 2014, 20, 6112.  doi: 10.1002/chem.201400178

    13. [13]

      Møller, O.; Steinberg, E. M.; Torssell, K. Acta Chem. Scand., Ser. B 1978, 32, 98.

    14. [14]

      (a) Hong, B.; Nimje, R. Y.; Wu, M.; Sadani, A. A. Eur. J.Org. Chem. 2008, 1449.
      (b) Wang, Y.; Luo, Y.; Zhang, H.; Xu, P. Org. Biomol. Chem.2012, 10, 8211.
      (c) Li, G.; Xie, J.; Hou, J.; Zhu, S.; Zhou, Q. Adv. Synth. Catal.2013, 355, 1597.

    15. [15]

      Evans, D. A.; Mito, S.; Seidel, D. J. Am. Chem. Soc. 2007, 129, 11583.  doi: 10.1021/ja0735913

    16. [16]

      Meng, X.-L.; Liu, T.; Sun, Z.-W.; Wang, J.-C.; Peng, F.-Z.; Shao, Z.-H. Org. Lett. 2014, 16, 3044.  doi: 10.1021/ol501158b

    17. [17]

      Liu, T.; Zhou, M.; Yuan, T.; Fu, B.; Wang, X.; Peng, F.; Shao, Z. Adv. Synth. Catal. 2017, 359, 89.  doi: 10.1002/adsc.v359.1

    18. [18]

      (a) Tsakos, M.; Kokotos, C. G.; Kokotos, G. Adv. Synth.Catal. 2012, 354, 740.
      (b) Flores-Ferrándiz, J.; Stiven, A.; Sotorríos, L.; Glmez-Bengoa, E.; Chinchilla, R. Tetrahedron: Asymmetry2015, 26, 970.

    19. [19]

      (a) Hénon, H.; Mauduit, M.; Alexakis, A. Angew. Chem., Int. Ed. 2008, 47, 9122.
      (b) Tian, X.; Liu, Y.-K.; Melchiorre, P. Angew. Chem., Int. Ed. 2012, 51, 6439.

    20. [20]

      Ganesh, M.; Namboothiri, I. N. N. Tetrahedron 2007, 63, 11973.  doi: 10.1016/j.tet.2007.09.012

    21. [21]

      Belot, S.; Vogt, K. A.; Besnard, C.; Krause, N.; Alexakis, A. Angew. Chem., Int. Ed. 2009, 48, 8923.  doi: 10.1002/anie.v48:47

    22. [22]

      Belot, S.; Quintard, A.; Krause, N.; Alexakis, A. Adv. Synth. Catal. 2010, 352, 667.  doi: 10.1002/adsc.v352:4

    23. [23]

      (a) Tissot, M.; Müller, D.; Belot, S.; Alexakis, A. Org. Lett. 2010, 12, 2770.
      (b) Tissot, M.; Alexakis, A. Chem. Eur. J. 2013, 19, 11352.

    24. [24]

      Li, X.-J.; Peng, F.-Z.; Li, X.; Wu, W.-T.; Sun, Z.-W.; Li, Y.-M.; Zhang, S.-X.; Shao, Z.-H. Chem.-Asian J. 2011, 6, 220.  doi: 10.1002/asia.201000561

    25. [25]

      Uraguchi, D.; Kinoshita, N.; Kizu, T.; Ooi, T. Synlett 2011, 9, 1265.

    26. [26]

      Li, X.; Li, X.; P. F.; Shao, Z. Adv. Synth. Catal. 2012, 354, 2873.  doi: 10.1002/adsc.v354.14/15

    27. [27]

      Maji, B.; Ji, L.; Wang, S.; Vedachalam, S.; Ganguly, R.; Liu, X.-W. Angew. Chem., Int. Ed. 2012, 51, 8276.  doi: 10.1002/anie.v51.33

    28. [28]

      Bharathiraja, G.; Sakthivel, S.; Sengoden, M.; Punniyamurthy, T. Org. Lett. 2013, 15, 4996.  doi: 10.1021/ol402305b

    29. [29]

      Cao, Z.-Y.; Zhao, Y.-L.; Zhou, J. Chem. Commun. 2016, 52, 2537.  doi: 10.1039/C5CC10096H

  • 加载中
    1. [1]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    2. [2]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    5. [5]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    6. [6]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    7. [7]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    8. [8]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    13. [13]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    14. [14]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    15. [15]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    16. [16]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    17. [17]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    18. [18]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    19. [19]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    20. [20]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

Metrics
  • PDF Downloads(3)
  • Abstract views(3944)
  • HTML views(323)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return