Citation: Tan Jihua, Huo Yanping, Cai Ning, Ji Shaomin, Li Zongzhi, Zhang Li. Progress on Donor-Acceptor Type Thermally Activated Delayed Fluorescence Based Blue Emitters[J]. Chinese Journal of Organic Chemistry, ;2017, 37(10): 2457-2480. doi: 10.6023/cjoc201704015 shu

Progress on Donor-Acceptor Type Thermally Activated Delayed Fluorescence Based Blue Emitters

  • Corresponding author: Huo Yanping, organicteacherhuo@126.com
  • Received Date: 11 April 2017
    Revised Date: 3 June 2017
    Available Online: 16 October 2017

    Fund Project: the National Natural Science Foundation of China 61671162the Guangdong Provience Universities and Colleges Young Pearl River Scholar Funded Scheme 2016Project supported by the National Natural Science Foundation of China (Nos. 61671162, 21372051), the Science and Technology Planning Project of Guangdong Province (No. 2016A010103031) and the Guangdong Provience Universities and Colleges Young Pearl River Scholar Funded Scheme (2016).the National Natural Science Foundation of China 21372051the Science and Technology Planning Project of Guangdong Province 2016A010103031

Figures(3)

  • In thermally activated delayed fluorescence (TADF) based emitters, the excitons from the lowest triplet state (T1) can be efficiently upconverted into the lowest singlet (S1) state via reverse intersystem crossing (RISC) process due to the small energy gap (ΔEST) between their S1 and T1 states, harvesting both S1 and T1 excitons for emission, with non-noble metals, which can break the internal/external quantum efficiency (IQE/EQE) (≤25%/≤ 5%) limitation of conventional fluorescence based organic light-emitting diodes (OLEDs). Their no-noble metals feature makes them more competitive than phosphorescence materials in making OLEDs. Among the vast of TADF materials, eletrons donor-acceptor (D-A) type is one of the most popular TADF material due to their outstanding performance and convenience of preparation. On the other hand, efficient blue emitters are facing issues related to their stability and color purity that makes their development quite challenging for researchers. In this review, the D-A type blue TADF emitters and OLEDs reported recently are summarized, the mechanism of TADF based OLEDs and the principle of designs are elaborated, and a full vision of its development is made.
  • 加载中
    1. [1]

      Tang, C. W.; van Slyke, S. A. Appl. Phys. Lett. 1987, 51, 913.  doi: 10.1063/1.98799

    2. [2]

      (a) Adachi, C. Jpn. J. Appl. Phys. 2014, 53, 101.
      (b) Li, B. L. Chin. J. Org. Chem. 2015, 35, 2487
      (in Chinese).
      (李保林, 有机化学, 2015, 35, 2487.)
      (c) Wu, Y.; Zhang, Z.; Yue, S.; Huang, R.; Du, H.; Zhao, Y. Chin. J. Chem. 2015, 33, 897.
      (d) Duan, L.; Tsuboi, T.; Qiu, Y. Chin. J. Chem. 2015, 33, 859.
      (e) Zeng, H.; Huang, Q.; Liu, J.; Huang, Y.; Zhou, J.; Zhao, S.; Lu, Z. Chin. J. Chem. 2016, 34, 387.
      (f) Jiu, Y.; Wang, J.; Liu, C.; Lai, W.; Zhao, L.; Li, X.; Jiang, Y.; Xu, W.; Zhang, X.; Huang, W. Chin. J. Chem. 2015, 33, 873.
      (g) Luo, J.; Xie, G.; Gong, S.; Chen, T.; Yang, C. Chem. Commun. 2016, 52, 2292.
      (f) Xie, G.; Luo, J.; Huang, M.; Chen, T.; Wu, K.; Gong, S.; Yang, C. Adv. Mater. 2017, 29, 1604223.

    3. [3]

      Helfrich, W.; Schneider, W. G. Phys. Rev. Lett. 1965, 14, 229.  doi: 10.1103/PhysRevLett.14.229

    4. [4]

      Baldo, M. A.; O'Brien, D. F.; Thompson, M. E.; Forrest, S. R. Phys. Rev. B 1999, 60, 14422.  doi: 10.1103/PhysRevB.60.14422

    5. [5]

      Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. Photochem. Photobiol. 2012, 88, 1033.  doi: 10.1111/j.1751-1097.2012.01178.x

    6. [6]

      Forrest, S. R.; Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E. Nature 1998, 395, 151.  doi: 10.1038/25954

    7. [7]

      Tao, Y. T.; Yang, C. L.; Qin, J. Q. Chem. Soc. Rev. 2011, 40, 2943.  doi: 10.1039/c0cs00160k

    8. [8]

      (a) Goushi, K.; Yoshida, K.; Sato, K.; Adachi, C. Nat. Photonics 2012, 6, 253.
      (b) Zhu, M. Z.; Yang, C. L. Chem. Soc. Rev. 2013, 42, 4963.
      (c) Reineke, S.; Baldo, M. A. Phys. Status Solidi A 2012, 209, 2341.
      (d) Lin, M. S.; Chi, L. C.; Chang, H. W.; Huang, Y. H.; Tien, K. C.; Chen, C. C.; Chang, C. H.; Wu, C. C.; Chaskar, A.; Chou, S. H.; Ting, H. C.; Wong, K. T.; Liu, Y. H.; Chi, Y. J. Mater. Chem. 2012, 22, 870.

    9. [9]

      Endo, A.; Ogasawara, M.; Takahashi, A.; Yokoyama, D.; Kato, Y.; Adachi, C. Adv. Mater. 2009, 21, 4802.  doi: 10.1002/adma.200900983

    10. [10]

      Zhang, Q.; Li, B.; Huang, S.; Nomura, H.; Tanaka, H.; Adachi, C. Nat. Photonics 2014, 8, 326.  doi: 10.1038/nphoton.2014.12

    11. [11]

      Sato, K.; Shizu, K.; Yoshimura, K.; Kawada, A.; Miyazaki, H.; Adachi, C. Phys. Rev. Lett. 2013, 110, 247401.  doi: 10.1103/PhysRevLett.110.247401

    12. [12]

      Baleizão, C.; Nagl, S.; Borisov, S. M.; Schäferling, M.; Wolfbeis, O. S.; Berberan-Santos, M. N. Chem.-Eur. J. 2007, 13, 3643.  doi: 10.1002/(ISSN)1521-3765

    13. [13]

      Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931.  doi: 10.1002/adma.v26.47

    14. [14]

      Chen, T.; Zheng, L.; Yuan, J.; An, Z.; Chen, R.; Tao, Y.; Li, H.; Xie, X.; Huang, W. Sci. Rep. 2015, 5, 10923.  doi: 10.1038/srep10923

    15. [15]

      Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.  doi: 10.1038/nature11687

    16. [16]

      Mehes, G.; Nomura, H.; Zhang, Q.; Nakagawa, T.; Adachi, C. Angew. Chem., Int. Ed. 2012, 51, 11311.  doi: 10.1002/anie.201206289

    17. [17]

      Kawasumi, K.; Wu, T.; Zhu, T.; Chae, H. S.; Van Voorhis, T.; Baldo, M. A.; Swager, T. M. J. Am. Chem. Soc. 2015, 137, 11908.  doi: 10.1021/jacs.5b07932

    18. [18]

      Lee, S. Y.; Yasuda, T.; Yang, Y. S.; Zhang, Q.; Adachi, C. Angew. Chem. 2014, 126, 6520.  doi: 10.1002/ange.201402992

    19. [19]

      Lee, S. Y.; Yasuda, T.; Park, I. S.; Adachi, C. Dalton. Trans. 2015, 44, 8356.  doi: 10.1039/C4DT03608E

    20. [20]

      Zhang, Q.; Li, J.; Shizu, K.; Huang, S.; Hirata, S.; Miyazaki, H.; Adachi, C. J. Am. Chem. Soc. 2012, 134, 14706.  doi: 10.1021/ja306538w

    21. [21]

      Yao, L.; Yang, B.; Ma, Y. Sci. China, Chem. 2014, 57, 335.  doi: 10.1007/s11426-013-5046-y

    22. [22]

      Guo, J.; Li, X. L.; Nie, H.; Luo, W.; Gan, S.; Hu, S.; Hu, R.; Qin, A.; Zhao, Z.; Su, S. J.; Tang, B. Z. Adv. Funct. Mater. 2017, 27, 1606458.  doi: 10.1002/adfm.v27.13

    23. [23]

      Shizu, K.; Noda, H.; Tanaka, H.; Taneda, M.; Uejima, M.; Sato, T.; Tanaka, K.; Kaji, H.; Adachi, C. J. Phys. Chem. C 2015, 119, 26283.  doi: 10.1021/acs.jpcc.5b07798

    24. [24]

      Hirata, S.; Sakai, Y.; Masui, K.; Tanaka, H.; Lee, S. Y.; Nomura, H.; Nakamura, N.; Yasumatsu, M.; Nakanotani, H.; Zhang, Q.; Shizu, K.; Miyazaki, H.; Adachi, C. Nat. Mater. 2015, 14, 330.

    25. [25]

      Su, S. J.; Gonmori, E.; Sasabe, H.; Kido, J. Adv. Mater. 2008, 20, 4189.

    26. [26]

      Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.; Miya-zaki, H.; Adachi, C. Appl. Phys. Lett. 2011, 98, 083302.  doi: 10.1063/1.3558906

    27. [27]

      Hirata, S.; Sakai, Y.; Masui, K.; Tanaka, H.; Lee, S. Y.; Nomura, H.; Nakamura, N.; Yasumatsu, M.; Nakanotani, H.; Zhang, Q.; Shizu, K.; Miyazaki, H.; Adachi, C. Nat. Mater. 2015, 14, 330.

    28. [28]

      Lee, S. Y.; Yasuda, T.; Nomura, H.; Adachi, C. Appl. Phys. Lett. 2012, 101, 093306.  doi: 10.1063/1.4749285

    29. [29]

      Cha, J. R.; Lee, C. W.; Lee, J. Y.; Gong, M. S. Dyes Pigm. 2016, 134, 562.  doi: 10.1016/j.dyepig.2016.08.023

    30. [30]

      Kim, H. M.; Choi, J. M.; Lee, J. Y. RSC Adv. 2016, 6, 64133.  doi: 10.1039/C6RA13240E

    31. [31]

      Lee, D. R.; Choi, J. M.; Lee, C. W.; Lee, J. Y. ACS Appl. Mater. Interfaces 2016, 8, 23190.  doi: 10.1021/acsami.6b05877

    32. [32]

      Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4556.  doi: 10.1021/cm049473l

    33. [33]

      Zhu, R.; Wen, G. A.; Feng, J. C.; Chen, R. F.; Zhao, L.; Yao, H. P.; Fan, Q. L.; Wei, W.; Peng, B.; Huang, W. Macromol. Rapid Commun. 2005, 26, 1729.  doi: 10.1002/(ISSN)1521-3927

    34. [34]

      Zhang, Z. M.; Li, G. W.; Ma, Y. G.; Wu, F.; Tian, W. J.; Shen, J. C.; Chin. J. Org. Chem. 2000, 20, 529(in Chinese).  doi: 10.3321/j.issn:0253-2786.2000.04.014

    35. [35]

      Lee, J.; Shizu, K.; Tanaka, H.; Nomura, H.; Yasuda, T.; Adachi, C. J. Mater. Chem. C 2013, 1, 4599.

    36. [36]

      Zhang, Q.; Li, B.; Huang, S.; Nomura, H.; Tanaka, H.; Adachi, C. Nat. Photonics 2014, 8, 326.  doi: 10.1038/nphoton.2014.12

    37. [37]

      (a) Obolda, A.; Peng, Q.; He, C.; Zhang, T.; Ren, J.; Ma, H.; Shuai, Z.; Li, F. Adv. Mater. 2016, 28, 4740.
      (b) Tanaka, H.; Shizu, K.; Miyazaki, H.; Adachi, C. Chem. Commun. 2012, 48, 11392.
      (c) Wu, K.; Zhang, T.; Zhan, L.; Zhong, C.; Gong, S.; Jiang, N.; Lu, Z.-H.; Yang, C. Chem.-Eur. J. 2016, 22, 10860.
      (d) Takahashi, T.; Shizu, K.; Yasuda, T.; Togashi, K.; Adachi, C. Sci. Technol. Adv. Mater. 2014, 15, 034202.

    38. [38]

      (a) Su, S. J.; Sasabe, H.; Takeda, T.; Kido, J. Chem. Mater. 2008, 20, 1691.
      (b) Sun, Y.; Duan, L.; Zhang, D.; Qiao, J.; Dong, G.; Wang, L.; Qiu, Y. Adv. Funct. Mater. 2011, 21, 1881.

    39. [39]

      Sasabe, H.; Gonmori, E.; Chiba, T.; Li, Y. J.; Tanaka, D.; Su, S. J.; Takeda, T.; Pu, Y. J.; Nakayama, K. I.; Kido, J. Chem. Mater. 2008, 20, 5951.  doi: 10.1021/cm801727d

    40. [40]

      Park, I. S.; Komiyama, H.; Yasuda, T. Chem. Sci. 2017, 8, 953.  doi: 10.1039/C6SC03793C

    41. [41]

      Park, I. S.; Lee, J.; Yasuda, T. J. Mater. Chem. C 2016, 4, 7911.  doi: 10.1039/C6TC02027E

    42. [42]

      Komatsu, R.; Sasabe, H.; Seino, Y.; Nakao, K.; Kido, J. J. Mater. Chem. C 2016, 4, 2274.  doi: 10.1039/C5TC04057D

    43. [43]

      (a) Wettach, H.; Jester, S. S.; Colsmann, A.; Lemmer, U.; Rehmann, N.; Meerholz, K.; Höger, S. Synth. Met. 2010, 160, 691.
      (b) Shan, T.; Liu, Y.; Tang, X.; Bai, Q.; Gao, Y.; Gao, Z.; Li, J.; Deng, J.; Yang, B.; Lu, P.; Ma, Y. ACS Appl. Mater. Interfaces 2016. 8, 28771

    44. [44]

      Togashi, K.; Yasuda, T.; Adachi, C. Chem. Lett. 2013, 42, 383.  doi: 10.1246/cl.121247

    45. [45]

      Park, J. Y.; Kim, J. M.; Lee, H.; Ko, K. Y.; Yook, K. S.; Lee, J. Y.; Baek, Y. G. Thin Solid Films 2011, 519, 5917.  doi: 10.1016/j.tsf.2011.03.022

    46. [46]

      Togashi, K.; Nomura, S.; Yokoyama, N.; Yasuda, T.; Adachi, C. J. Mater. Chem. 2012, 22, 20689.  doi: 10.1039/c2jm33669c

    47. [47]

      Takahashi, T.; Shizu, K.; Yasuda, T.; Togashi, K.; Adachi, C. Sci. Technol. Adv. Mater. 2014, 15, 34202.  doi: 10.1088/1468-6996/15/3/034202

    48. [48]

      Kwon, D. Y.; Lee, G. H.; Kim, Y. S. J. Nanosci. Nanotechnol. 2015, 15, 7828.  doi: 10.1166/jnn.2015.11192

    49. [49]

      Tsai, W. L.; Huang, M. H.; Lee, W. K.; Hsu, Y. J.; Pan, K. C.; Huang, Y. H.; Ting, H. C.; Sarma, M.; Ho, Y. Y.; Hu, H. C.; Chen, C. C.; Lee, M. T.; Wong, K. T.; Wu, C. C. Chem. Commun. 2015, 51, 13662.  doi: 10.1039/C5CC05022G

    50. [50]

      Nasu, K.; Nakagawa, T.; Nomura, H.; Lin, C. J.; Cheng, C. H.; Tseng, M. R.; Yasuda, T.; Adachi, C. Chem. Commun. 2013, 49, 10385.  doi: 10.1039/c3cc44179b

    51. [51]

      Sun, J. W.; Baek, J. Y.; Kim, K. H.; Huh, J. S.; Kwon, S. K.; Kim, Y. H.; Kim, J. J. J. Mater. Chem. C 2017, 5, 1027.  doi: 10.1039/C6TC04653C

    52. [52]

      Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Huang, P. Y.; Huang, M. J.; Ren, W. C. Z.; Yang, C. Y.; Chiu, M. J.; Chu, L. K.; Lin, H. W.; Cheng, C. H. J. Am. Chem. Soc. 2016, 138, 628.  doi: 10.1021/jacs.5b10950

    53. [53]

      Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Ren, W. C. Z.; Lin, H. W.; Cheng, C. H. J. Mater. Chem. C 2016, 4, 900.  doi: 10.1039/C5TC03943F

    54. [54]

      Masui, K.; Nakanotani, H.; Adachi, C. Org. Electron. 2013, 14, 2721.  doi: 10.1016/j.orgel.2013.07.010

    55. [55]

      Sun, J. W.; Kim, K. H.; Moon, C. K.; Lee, J. H.; Kim, J. J. ACS Appl. Mater. Interfaces 2016, 8, 9806.  doi: 10.1021/acsami.6b00286

    56. [56]

      Cho, Y. J.; Yook, K. S.; Lee, J. Y. Sci. Rep. 2015, 5, 7859.  doi: 10.1038/srep07859

    57. [57]

      Lee, D. R.; Hwang, S. H.; Jeon, S. K.; Lee, C. W.; Lee, J. Y. Chem. Commun. 2015, 51, 8105.  doi: 10.1039/C5CC01940K

    58. [58]

      Kim, M.; Jeon, S. K.; Hwang, S. H.; Lee, S. S.; Yu, E.; Lee, J. Y. Chem. Commun 2016, 52, 339.  doi: 10.1039/C5CC07999C

    59. [59]

      Cho, Y. J.; Chin, B. D.; Jeon, S. K.; Lee, J. Y. Adv. Funct. Mater. 2015, 25, 6786.  doi: 10.1002/adfm.201502995

    60. [60]

      Cho, Y. J.; Jeon, S. K.; Lee, S. S.; Yu, E.; Lee, J. Y. Chem. Mater. 2016, 28, 5400.  doi: 10.1021/acs.chemmater.6b01484

    61. [61]

      Park, I. S.; Lee, S. Y.; Adachi, C.; Yasuda, T. Adv. Funct. Mater. 2016, 26, 1813.  doi: 10.1002/adfm.v26.11

    62. [62]

      Chen, D. Y.; Liu, W.; Zheng, C. J.; Wang, K.; Li, F.; Tao, S. L.; Ou, X. M.; Zhang, X. H. ACS Appl. Mater. Interfaces 2016, 8, 16791.  doi: 10.1021/acsami.6b03954

    63. [63]

      Liu, W.; Zheng, C. J.; Wang, K.; Chen, Z.; Chen, D. Y.; Li, F.; Ou, X. M.; Dong, Y. P.; Zhang, X. H. ACS Appl. Mater. Interface 2015, 7, 18930.  doi: 10.1021/acsami.5b05648

    64. [64]

      Pan, K. C.; Li, S. W.; Ho, Y. Y.; Shiu, Y. J.; Tsai, W. L.; Jiao, M.; Lee, W. K.; Wu, C. C.; Chung, C. L.; Chatterjee, T.; Li, Y. S.; Wong, K. T.; Hu, H. C.; Chen, C. C.; Lee, M. T. Adv. Funct. Mater. 2016, 26, 7560.  doi: 10.1002/adfm.v26.42

    65. [65]

      Im, J. B.; Lampande, R.; Kim, G. H.; Lee, J. Y.; Kwon, J. H. J. Phys. Chem. C 2017, 121, 1305.  doi: 10.1021/acs.jpcc.6b10854

    66. [66]

      Suzuki, K.; Kubo, S.; Shizu, K.; Fukushima, T.; Wakamiya, A.; Murata, Y.; Adachi, C.; Kaji, H. Angew. Chem. 2015, 127, 15446.  doi: 10.1002/ange.201508270

    67. [67]

      Numata, M.; Yasuda, T.; Adachi, C. Chem. Commun. 2015, 51, 9443.  doi: 10.1039/C5CC00307E

    68. [68]

      Park, I. S.; Numata, M.; Adachi, C.; Yasuda, T. Bull. Chem. Soc. Jpn. 2016, 89, 375.  doi: 10.1246/bcsj.20150399

    69. [69]

      Kitamoto, Y.; Namikawa, T.; Ikemizu, D.; Miyata, Y.; Suzuki, T.; Kita, H.; Sato, T.; Oi, S. J. Mater. Chem. C 2015, 3, 9122.  doi: 10.1039/C5TC01380A

    70. [70]

      Kitamoto, Y.; Namikawa, T.; Suzuki, T.; Miyata, Y.; Kita, H.; Sato, T.; Oi, S. Org. Electron. 2016, 34, 208.  doi: 10.1016/j.orgel.2016.04.030

    71. [71]

      Kitamoto, Y.; Namikawa, T.; Suzuki, T.; Miyata, Y.; Kita, H.; Sato, T.; Oi, S. Tetrahedron Lett. 2016, 57, 4914.  doi: 10.1016/j.tetlet.2016.09.072

    72. [72]

      Zhang, Q.; Li, J.; Shizu, K.; Huang, S.; Hirata, S.; Miyazaki, H.; Adachi, C. J. Am. Chem. Soc. 2012, 134, 14706.  doi: 10.1021/ja306538w

    73. [73]

      Wu, S.; Aonuma, M.; Zhang, Q.; Huang, S.; Nakagawa, T.; Ku-wabara, K.; Adachi, C. J. Mater. Chem. C 2014, 2, 421.  doi: 10.1039/C3TC31936A

    74. [74]

      Li, J.; Liao, X.; Xu, H.; Li, L.; Zhang, J.; Wang, H.; Xu, B. Dyes Pigm. 2017, 140, 79.  doi: 10.1016/j.dyepig.2017.01.036

    75. [75]

      Liu, M.; Seino, Y.; Chen, D.; Inomata, S.; Su, S. J.; Sasabe, H.; Kido, J. Chem. Commun. 2015, 51, 16353.  doi: 10.1039/C5CC05435D

    76. [76]

      Lee, S. Y.; Adachi, C.; Yasuda, T. Adv. Mater. 2016, 28, 4626.  doi: 10.1002/adma.v28.23

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Zehua ZhangHaitao YuYanyu Qi . Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect. Acta Physico-Chimica Sinica, 2025, 41(1): 100006-0. doi: 10.3866/PKU.WHXB202309042

    3. [3]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    4. [4]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    5. [5]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    6. [6]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    7. [7]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    8. [8]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    9. [9]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    10. [10]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    11. [11]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    12. [12]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    13. [13]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    14. [14]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    15. [15]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    20. [20]

      Xianchen HuJunli YangFang GaoZhiyong ZhaoSimin Liu . Highly selective [4+4] cross-photodimerization of (4a-azonia)anthracenes driven by confinement of D-A hetero-guest pair in cucurbit[10]uril host. Chinese Chemical Letters, 2025, 36(3): 109967-. doi: 10.1016/j.cclet.2024.109967

Metrics
  • PDF Downloads(157)
  • Abstract views(5863)
  • HTML views(1824)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return