Citation: Li Hua, Ren Xiangwei, Zhao Wentao, Tang Xiangyang, Wang Guangwei. Cross-Coupling of Directed C-H and Organometallic Reagents for C-C Bond Formation[J]. Chinese Journal of Organic Chemistry, ;2017, 37(9): 2287-2302. doi: 10.6023/cjoc201703036 shu

Cross-Coupling of Directed C-H and Organometallic Reagents for C-C Bond Formation

  • Corresponding author: Zhao Wentao, wentao_zhao@tju.edu.cn Wang Guangwei, wanggw@tju.edu.cn
  • Received Date: 27 March 2017
    Revised Date: 3 May 2017
    Available Online: 17 September 2017

    Fund Project: National Basic Research Program of China 2015CB856500Project supported by the National Basic Research Program of China (No. 2015CB856500) and the Natural Science Foundation of Tianjin City (No. 16JCYBJC20100)Natural Science Foundation of Tianjin City 16JCYBJC20100

Figures(20)

  • Transition metal-catalyzed C-H activation is one of the most important areas in organic synthesis. Directed C-H activation can obviate the prefunctionalization of substrate, therefore providing a highly efficient and concise strategy for C-C formation. The cross-coupling of transition metal-activated C-H bond with organic electrophilic reagents has been proven effective for construction of various C-C bonds. Meanwhile, the oxidative coupling between the corresponding intermediates with organometallic reagents has become the focus for chemists due to their high reactivity, and notable achievements have been made in recent years. Here the oxidative couplings of C-H bond and organometallic reagents have been discussed and summarized according to the hybridization of substrate and organometallic reagents.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Commun. 2010, 46, 677.  doi: 10.1039/b908581e

    4. [4]

      Li, J.; Liu, K.; Duan, X.; Liu, J. Chin. J. Org. Chem. 2017, 37, 314(in Chinese).
       

    5. [5]

      Gao, K.; Yoshikai, N. Acc. Chem. Res. 2014, 47, 1208.  doi: 10.1021/ar400270x

    6. [6]

      Su, B.; Cao, Z.-C.; Shi, Z.-J. Acc. Chem. Res. 2015, 48, 886.  doi: 10.1021/ar500345f

    7. [7]

      Yang, Y.; Lan, J.; You, J. Chem. Rev. 2017, 117, 8787.  doi: 10.1021/acs.chemrev.6b00567

    8. [8]

      (a) Dastbaravardeh, N.; Christakakou, M.; Haider, M.; Schnürch, M. Synthesis 2014, 46, 1421.
      (b) Shang, M.; Sun, S.-Z.; Wang, H.-L.; Wang, M.-M.; Dai, H.-X. Synthesis 2016, 48, 4381.

    9. [9]

      Negishi, E.; Anastasia, L. Chem. Rev. 2003, 103, 1979.  doi: 10.1021/cr020377i

    10. [10]

      Chen, M.; Zheng, X.; Li, W; He, J.; Lei, A. J. Am. Chem. Soc. 2010, 132, 4101.  doi: 10.1021/ja100630p

    11. [11]

      Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275.  doi: 10.1021/ar050199q

    12. [12]

      Dick, G. R.; Woerly, E. M.; Burke, M. D. Angew. Chem., Int. Ed. 2012, 51, 2667.  doi: 10.1002/anie.201108608

    13. [13]

      Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007, 129, 3510.  doi: 10.1021/ja0701614

    14. [14]

      Wasa, M.; Chan, K. S. L.; Yu, J.-Q. Chem. Lett. 2011, 40, 1004.  doi: 10.1246/cl.2011.1004

    15. [15]

      Thuy-Boun, P. S.; Villa, G.; Dang, D.; Richardson, P.; Su, S.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 17508.  doi: 10.1021/ja409014v

    16. [16]

      Neufeldt, S. R.; Seigerman, C. K.; Sanford, M. S. Org. Lett. 2013, 15, 2302.  doi: 10.1021/ol400888r

    17. [17]

      Peng, P.; Wang, J.; Jiang, H.; Liu, H. Org. Lett. 2016, 18, 5376.  doi: 10.1021/acs.orglett.6b02755

    18. [18]

      Chen, Q.; Ilies, L.; Yoshikai, N.; Nakamura, E. Org. Lett. 2011, 13, 3232.  doi: 10.1021/ol2011264

    19. [19]

      Ilies, L.; Ichikawa, S.; Asako, S.; Matsubara, T.; Nakamura, E. Adv. Synth. Catal. 2015, 357, 2175.  doi: 10.1002/adsc.v357.10

    20. [20]

      Graczyk, K.; Haven, T.; Ackermann, L. Chem.-Eur. J. 2015, 21, 8812.  doi: 10.1002/chem.201501134

    21. [21]

      Negishi, E.; Okukado, N.; King, A. O.; Van Horn, D. E.; Spiegel, B. I. J. Am. Chem. Soc. 1978, 100, 3354.  doi: 10.1021/ja00479a018

    22. [22]

      Xu, S.; Negishi, E. Acc. Chem. Soc. 2016, 49, 2158.  doi: 10.1021/acs.accounts.6b00338

    23. [23]

      Shang, R.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2015, 137, 7660.  doi: 10.1021/jacs.5b04818

    24. [24]

      Chen, X.; Li, J.-J.; Hao, X.-S.; Goodhue, C.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 78.  doi: 10.1021/ja0570943

    25. [25]

      Cai, G.; Fu, Y.; Li, Y.; Wan, X.; Shi, Z. J. Am. Chem. Soc. 2007, 129, 7666.  doi: 10.1021/ja070588a

    26. [26]

      Feng, R.; Yao, J.; Liang, Z.; Liu, Z.; Zhang, Y. J. Org. Chem. 2013, 78, 3688.  doi: 10.1021/jo400186p

    27. [27]

      Tan, P.-W.; Haughey, M.; Dixon, D. J. Chem. Commun. 2015, 51, 4406.  doi: 10.1039/C5CC00410A

    28. [28]

      Laforteza, B. N.; Chan, K. S. L.; Yu, J.-Q. Angew. Chem., Int. Ed. 2015, 54, 11143.  doi: 10.1002/anie.201505204

    29. [29]

      Xiao, K.-J.; Chu, L.; Chen, G.; Yu, J.-Q. J. Am. Chem. Soc. 2016, 138, 7796.  doi: 10.1021/jacs.6b04660

    30. [30]

      Krasnov, V. P.; Gruzdev, D. A.; Levit, G. L. Eur. J. Org. Chem. 2012, 1471.

    31. [31]

      Vogler, T.; Studer, A. Org. Lett. 2008, 10, 129.  doi: 10.1021/ol702659a

    32. [32]

      Chu, J.-H.; Tsai, S.-L.; Wu, M.-J. Synthesis 2009, 3757.

    33. [33]

      Ilies, L.; Okabe, J.; Yoshikai, N.; Nakamura, E. Org. Lett. 2010, 12, 2838.  doi: 10.1021/ol1009448

    34. [34]

      Yoshikai, N.; Asako, S.; Yamakawa, T.; Ilies, L.; Nakamura, E. Chem.-Asian J. 2011, 6, 3059.  doi: 10.1002/asia.v6.11

    35. [35]

      Ilies, L.; Asako, S.; Nakamura, E. J. Am. Chem. Soc. 2011, 133, 7672.  doi: 10.1021/ja2017202

    36. [36]

      Shang, M.; Sun, S.-Z.; Wang, H.-L.; Wang, M.-M.; Dai, H.-X. Synthesis 2016, 48, 4381.  doi: 10.1055/s-0035-1562795

    37. [37]

      Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154.  doi: 10.1021/ja054549f

    38. [38]

      Shang, R.; Ilies, L.; Asako, S.; Nakamura, E. J. Am. Chem. Soc. 2014, 136, 14349.  doi: 10.1021/ja5070763

    39. [39]

      Gui, Q.; Chen, X.; Hu, L.; Wang, D.; Liu, J.; Tan, Z. Adv. Synth. Catal. 2016, 358, 509.  doi: 10.1002/adsc.201500884

    40. [40]

      Hu, L.; Gui, Q.; Chen, X.; Tan, Z.; Zhu, G. Org. Biomol. Chem. 2016, 14, 11070.  doi: 10.1039/C6OB02224C

    41. [41]

      Wang, D.; Yu, X.; Xu, X.; Ge, B.; Wang, X.; Zhang, Y. Chem. Eur. J. 2016, 22, 8663.  doi: 10.1002/chem.v22.25

    42. [42]

      Yu, X.; Wang, D.-S.; Xu, Z.; Yang, B.; Wang, D. Org. Chem. Front. 2017, 4, 1011.  doi: 10.1039/C6QO00793G

    43. [43]

      (a) Wasa, M.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 9886.
      (b) Wasa, M.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 3680.
      (c) Wasa, M.; Worrell, B. T.; Yu, J.-Q. Angew. Chem., Int. Ed. 2010, 49, 1275.
      (d) Wasa, M.; Yu, J.-Q. Tetrahedron 2010, 66, 4811.
      (e) Yoo, E. J.; Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 17378.
      (f) Yoo, E.-J.; Ma, S.; Mei, T.-S. Chan, K. S. L. Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 7652.

    44. [44]

      Wang, H.-W.; Cui, P.; Lu, Y.; Sun, W.-Y.; Yu, J.-Q. J. Org. Chem. 2016, 81, 3416.  doi: 10.1021/acs.joc.6b00083

    45. [45]

      (a) Leow, D.; Li, G.; Mei, T.-S.; Yu, J.-Q. Nature 2012, 486, 518.
      (b) Dai, H.-X.; Li, G.; Zhang, X.-G.; Stepan, A. F.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 7567.

    46. [46]

      Wan, L.; Dastbaravardeh, N.; Li, G.; Yu, J-Q. J. Am. Chem. Soc. 2013, 135, 18056.  doi: 10.1021/ja410760f

    47. [47]

      Chinnagolla, R. K.; Jeganmohan, M. Org. Lett. 2012, 14, 5246.  doi: 10.1021/ol3024067

    48. [48]

      (a) Chinnagolla, R. K.; Jeganmohan, M. Chem. Commun. 2014, 50, 2442.
      (b) Hubrich, J.; Himmler, T.; Rodefeld, L.; Ackermanna, L. Adv. Synth. Catal. 2015, 357, 474.

    49. [49]

      Nishikata, T.; Abela, A. R.; Huang, S.; Lipshutz, B. H. J. Am. Chem. Soc. 2010, 132, 4978.  doi: 10.1021/ja910973a

    50. [50]

      Shang, M.; Sun, S.-Z.; Dai, H.-X.; Yu, J.-Q. Org. Lett. 2014, 16, 5666.  doi: 10.1021/ol5027377

    51. [51]

      (a) Zhou, H.; Xu, Y.-H.; Chung, W.-J.; Loh, T.-P. Angew. Chem., Int. Ed. 2009, 48, 5355.
      (b) Li, W.; Yin, Z.; Jiang, X.; Sun, P. J. Org. Chem. 2011, 76, 8543.

    52. [52]

      Zhao, S.; Liu, B.; Zhan, B.-B.; Zhang, W.-D.; Shi, B.-F. Org. Lett. 2016, 18, 4586.  doi: 10.1021/acs.orglett.6b02236

    53. [53]

      Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.; Murai, S. J. Am. Chem. Soc. 2003, 125, 1698.  doi: 10.1021/ja029273f

    54. [54]

      Ueno, S.; Chatani, N.; Kakiuchi, F. J. Org. Chem. 2007, 72, 3600.  doi: 10.1021/jo070182g

    55. [55]

      Paymode, D. J.; Ramana, C. V. J. Org. Chem. 2015, 80, 11551.  doi: 10.1021/acs.joc.5b01932

    56. [56]

      Tiwari, V. K.; Kamal, N.; Kapur, M. Org. Lett. 2017, 19, 262.  doi: 10.1021/acs.orglett.6b03558

    57. [57]

      Yang, Y.; Qiu, X.; Zhao, Y.; Mu, Y.; Shi, Z. J. Am. Chem. Soc. 2016, 138, 495.  doi: 10.1021/jacs.5b11569

    58. [58]

      Wang, L.; Li, Z.; Qu, X.; Peng, W. Chin. J. Chem. 2015, 33, 1015.  doi: 10.1002/cjoc.201500354

    59. [59]

      Wang, D.-H.; Mei, T.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 17676.  doi: 10.1021/ja806681z

    60. [60]

      Engle, K. M.; Thuy-Boun, P. S.; Dang, M.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 18183.  doi: 10.1021/ja203978r

    61. [61]

      (a) Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2010, 132, 3965.
      (b) Samanta, R.; Antonchick, A. P. Angew. Chem., Int. Ed. 2011, 50, 5217.
      (c) Yu, M.; Xie, Y.; Xie, C.; Zhang, Y. Org. Lett. 2012, 14, 2164.
      (d) Wang, D.; Yu, X.; Yao, W.; Hu, W.; Ge, C.; Shi, X. Chem.-Eur. J. 2016, 22, 5543.

    62. [62]

      Yao, J.; Yu, M.; Zhang, Y. Adv. Synth. Catal. 2012, 354, 3205.  doi: 10.1002/adsc.201200447

    63. [63]

      Wang, J.; Wang, S.; Wang, G.; Zhang, J.; Yu, X.-Q. Chem. Commun. 2012, 48, 11769.  doi: 10.1039/c2cc35468c

    64. [64]

      Wang, D.; Ge, B.; Li, L.; Shan, J.; Ding, Y. J. Org. Chem. 2014, 79, 8607.  doi: 10.1021/jo501467v

    65. [65]

      Ge, B.; Wang, D.; Dong, W.; Ma, P.; Li, Y.; Ding, Y. Tetrahedron Lett. 2014, 55, 5443.  doi: 10.1016/j.tetlet.2014.08.023

    66. [66]

      Wang, D.; Yu, X.; Ge, B.; Miao, H.; Ding, Y. Chin. J. Org. Chem. 2015, 35, 676.  doi: 10.6023/cjoc201412047

    67. [67]

      Liu, C.; Yang, F. Chin. J. Chem. 2016, 34, 1213.  doi: 10.1002/cjoc.v34.12

    68. [68]

      Xie, F.; Qi, Z.; Yu, S.; Li, X. J. Am. Chem. Soc. 2014, 136, 4780.  doi: 10.1021/ja501910e

    69. [69]

      Landge, V. G.; Midya, S. P.; Rana, J.; Shinde, D. R.; Balaraman, E. Org. Lett. 2016, 18, 5252.  doi: 10.1021/acs.orglett.6b02549

    70. [70]

      Arndtsen, B. A.; Bergman, R.; Mobley, T. A.; Peterson, T. Acc. Chem. Res. 1995, 28, 154.  doi: 10.1021/ar00051a009

    71. [71]

      Zhao, J.-B.; Zhang, Q. Acta Chim. Sinica 2015, 73, 1235(in Chinese).
       

    72. [72]

      Chen, X.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 12634.  doi: 10.1021/ja0646747

    73. [73]

      Wang, D.-H.; Wasa, M.; Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 7190.  doi: 10.1021/ja801355s

    74. [74]

      Wasa, M.; Engle, K. M.; Lin, D. W.; Yoo, E. J.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 19598.  doi: 10.1021/ja207607s

    75. [75]

      (a) Bachrach, S. M. J. Org. Chem. 2008, 73, 2466.
      (b) Li, S.; Zhu, R.-Y.; Xiao, K.-J.; Yu, J.-Q. Angew. Chem., Int. Ed. 2016, 55, 4317.

    76. [76]

      Xiao, K.-J.; Lin, D. W.; Miura, M.; Zhu, R.-Y.; Gong, W.; Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 8138.  doi: 10.1021/ja504196j

    77. [77]

      Wang, X.; Yu, D.-G.; Glorius, F. Angew. Chem., Int. Ed. 2015, 54, 10280.  doi: 10.1002/anie.201503888

    78. [78]

      (a) Pastine, S. J.; Gribkov, D. V.; Sames, D. J. Am. Chem. Soc. 2006, 128, 14220.
      (b) Phani Kumar, N. Y.; Jeyachandran, R.; Ackermann, L. J. Org. Chem. 2013, 78, 4145.
      (c) Dastbaravardeh, N.; Schnürch, M.; Mihovilovic, M. D. Org. Lett. 2012, 14, 1930.

    79. [79]

      Spangler, J. E.; Kobayashi, Y.; Verma, P.; Wang, D.-H.; Yu, J.-Q. J.Am. Chem. Soc. 2015, 137, 11876.  doi: 10.1021/jacs.5b06740

    80. [80]

      (a) He, G.; Zhao, Y.; Zhang, S.; Lu, C.-X.; Chen, G. J. Am. Chem. Soc. 2012, 134, 3.
      (b) Zhang, S.-Y.; He, G.; Nack, W. A.; Zhao, Y.-S.; Li, Q.; Chen, G. J. Am. Chem. Soc. 2013, 135, 2124.

    81. [81]

      Chan, K. S. L.; Wasa, M.; Chu, L.; Laforteza, B. N.; Miura, M.; Yu, J.-Q. Nat. Chem. 2014, 6, 146.  doi: 10.1038/nchem.1836

    82. [82]

      Yuan, C.; Tu, G.; Zhao, Y. Org. Lett. 2017, 19, 356.  doi: 10.1021/acs.orglett.6b03522

    83. [83]

      He, J.; Takise, R.; Fu, H.; Yu, J.-Q. J. Am. Chem. Soc. 2015, 137, 4618.  doi: 10.1021/jacs.5b00890

    84. [84]

      He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.; Homs, A.; Yu, J.-Q. Science 2014, 343, 1216.  doi: 10.1126/science.1249198

    85. [85]

      He, C.; Gaunt, M. J. Angew. Chem., Int. Ed. 2015, 54, 15840.  doi: 10.1002/anie.201508912

    86. [86]

      McNally, A.; Haffemayer, B.; Collins, B. S. L.; Gaunt, M. J. Nature 2014, 510, 129.  doi: 10.1038/nature13389

    87. [87]

      Smalley, A. P.; Gaunt, M. J. J. Am. Chem. Soc. 2015, 137, 10632.  doi: 10.1021/jacs.5b05529

    88. [88]

      Shang, R.; Ilies, L.; Matsumoto, A.; Nakamura, E. J. Am. Chem. Soc. 2013, 135, 6030.  doi: 10.1021/ja402806f

    89. [89]

      Gu, Q.; Al Mamari, H. H.; Graczyk, K.; Diers, E.; Ackermann, L. Angew. Chem., Int. Ed. 2014, 53, 3868.  doi: 10.1002/anie.201311024

    90. [90]

      Ano, Y.; Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2011, 133, 12984.  doi: 10.1021/ja206002m

    91. [91]

      Luo, F-X.; Xu, X.; Wang, D.; Cao, Z.-C.; Zhang, Y.-F.; Shi, Z.-J. Org. Lett. 2016, 18, 2040.  doi: 10.1021/acs.orglett.6b00289

    92. [92]

      Luo, F.-X.; Cao, Z.-C.; Zhao, H.-W.; Wang, D.; Zhang, Y.-F.; Xu, X.; Shi, Z.-J. Organometallics 2017, 36, 18.  doi: 10.1021/acs.organomet.6b00529

    93. [93]

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    4. [4]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    5. [5]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    6. [6]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    7. [7]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    8. [8]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    9. [9]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    10. [10]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    11. [11]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    17. [17]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    18. [18]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    19. [19]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(28)
  • Abstract views(2728)
  • HTML views(386)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return