Citation: Shi Dongdong, Bao Hanyang, Xu Zheng, Liu Yunkui. Synthesis of 6-Aryl Phenanthridines via Iron-Catalyzed sp2-C-H Bond Amination/Aromatization Reaction[J]. Chinese Journal of Organic Chemistry, ;2017, 37(5): 1290-1294. doi: 10.6023/cjoc201701054 shu

Synthesis of 6-Aryl Phenanthridines via Iron-Catalyzed sp2-C-H Bond Amination/Aromatization Reaction

  • Corresponding author: Liu Yunkui, ykuiliu@zjut.edu.cn
  • Received Date: 30 January 2017
    Revised Date: 27 March 2017

    Fund Project: Project supported by the National Natural Science Foundation of China 21372201the Opening Foundation of Zhejiang Key Course of Chemical Engineering and Technology, Zhejiang University of Technology, and the Xin Miao Talents Program of Zhejiang Province 2016R403057Project supported by the National Natural Science Foundation of China 21172197

Figures(1)

  • With FeCl2 as a catalyst and Selectfluor as an oxidant, an efficient and highly selective synthesis of 6-aryl phenanthridines in one-pot manner has been achieved via an intramolecular sp2-C-H bond amination/aromatization of N-(biphenyl-2-yl(aryl)methyl)benzenesulfonamide derivatives. The optimized reaction conditions were established through systematic investigations of solvents, temperature, catalysts, oxidants and their dosages in the reaction. The present reaction has advantages of simple operation, easy availability of starting materials, the use of inexpensive and low-toxic iron catalyst, and good compatibility of substrates.
  • 加载中
    1. [1]

      (a) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2008, 47, 3096. (b) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 49, 6954.

    2. [2]

      (a) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338. (b) Hartwig Acc. Chem. Res. 2008, 41, 1534.

    3. [3]

    4. [4]

    5. [5]

      (a) Stuart, D. R.; Laperle, M. B.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474. (b) Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908. (c) Li, J. J.; Mei, T. S.; Yu, J. Q. Angew. Chem., Int. Ed. 2008, 47, 6452.

    6. [6]

      (a) Wang, J.; Wang, M.; Chen, K.; Zha, S.; Song, C.; Zhu, J. Org. Lett. 2016, 18, 1178. (b) Wang, H.; Li, L.; Yu, S.; Li, Y.; Li, X. Org. Lett. 2016, 18, 2914.

    7. [7]

      (a) Zhang, Z.; Jiang, H.; Huang, Y. Org. Lett. 2014, 16, 5976. (b) Louillat, M. L.; Patureau, F. W. Org. Lett. 2013, 15, 164.

    8. [8]

      Xu, S.; Chen, X.; Li, J.; Xu, W.; Zhang, Y. Chin. J. Org. Chem. 2016, 36, 1985 (in Chinese).
       

    9. [9]

      Inamoto, K.; Saito, T.; Katsuno, M.; Sakamoto, T.; Hiroya, K. Org. Lett. 2007, 9, 2931.  doi: 10.1021/ol0711117

    10. [10]

      Stokes, B. J.; Dong, H.; Leslie, B. E.; Pumphrey, A. L.; Driver, T. G. J. Am. Chem. Soc. 2007, 129, 7500.  doi: 10.1021/ja072219k

    11. [11]

      Ackermann, L.; Lygin, A. V.; Hofmann, N. Angew. Chem., Int. Ed. 2011, 50, 6379.  doi: 10.1002/anie.201101943

    12. [12]

    13. [13]

      (a) Zhang, W.; Zhang, J.; Ren, S.; Liu, Y. J. Org. Chem. 2014, 79, 11508. (b) Zhang, W.; Lou, S.; Liu, Y.; Xu, Z. J. Org. Chem. 2013, 78, 5932. (c) Zhang, W.; Ren, S.; Zhang, J.; Liu, Y. J. Org. Chem. 2015, 800, 5973. (d) Wu, D.; Zhang, J.; Cui, J.; Zhang, W.; Liu, Y. Chem. Commun. 2014, 50, 10857.

    14. [14]

    15. [15]

      Buchwald, S. L.; Bolm, C. Angew. Chem., Int. Ed. 2009, 48, 5586.

    16. [16]

      Mazzotti, A. R.; Campbell, M. G.; Tang, P.; Murphy, J. M.; Ritter, T. J. Am. Chem. Soc. 2013, 135, 14012.  doi: 10.1021/ja405919z

    17. [17]

      Michaudel, Q.; Thevenet, D.; Baran, P. S. J. Am. Chem. Soc. 2012, 134, 2547.  doi: 10.1021/ja212020b

    18. [18]

      Su, X.; Yu, S. Chem. Commun. 2016, 52, 10898.

    19. [19]

      Chang, M. -Y.; Cheng, Y. -C. Org. Lett. 2016, 18, 1682.  doi: 10.1021/acs.orglett.6b00603

    20. [20]

      (a) Tang, E.; Mao, D.; Li, W.; Gao, Z.; Yao, P. Heterocycles 2012, 85, 667. (b) Kitahara, K.; Toma, T.; Shimokawa, J.; Fukuyama, T. Org. Lett. 2008, 10, 2259.

    21. [21]

      Fernando, P. C.; Scanlan, E. S.; Scottb, J. S.; Walton, J. C. Chem. Commun. 2008, 35, 4189.

    22. [22]

      Leardini, R. Synthesis. 1985, 1, 107.

    23. [23]

      Peng, J.; Chen, T.; Chen, G.; Li, B. J. Org. Chem. 2011, 76, 9507.  doi: 10.1021/jo2017108

  • 加载中
    1. [1]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    2. [2]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    3. [3]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    4. [4]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    7. [7]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    8. [8]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    9. [9]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    12. [12]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    13. [13]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    14. [14]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    15. [15]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    16. [16]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    17. [17]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    18. [18]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    19. [19]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(1)
  • Abstract views(1004)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return