Citation: Tian He, Wu Jingwei, Liu Yuqiang, Xie Yafei, Wang Jianwu, Zhao Guilong. Efficient Synthetic Approaches to Uric Acid Transporter 1 Inhibitors Bearing Alkoxyl Group-Substituted Triazoles[J]. Chinese Journal of Organic Chemistry, ;2017, 37(7): 1748-1756. doi: 10.6023/cjoc201701038 shu

Efficient Synthetic Approaches to Uric Acid Transporter 1 Inhibitors Bearing Alkoxyl Group-Substituted Triazoles

  • Corresponding author: Wang Jianwu, jwwang@sdu.edu.cn Zhao Guilong, zhao_guilong@126.com
  • Received Date: 19 January 2017
    Revised Date: 22 February 2017
    Available Online: 17 July 2017

    Fund Project: Key Projects of Tianjin Science and Technology Support Plan 16YFZCSY00910Project supported by the Key Projects of Tianjin Science and Technology Support Plan (No.16YFZCSY00910) and the Natural Science Foundation of Shandong Province (No.ZR2015BM028)the Natural Science Foundation of Shandong Province ZR2015BM028

Figures(3)

  • Uric acid transporter 1 (URAT1) inhibitors bearing alkoxy group-substituted triazoles 3-(4-(4-cyclopropylnaphthalen-1-yl)-5-methoxy-4H-1, 2, 4-triazol-3-yl)propanoic acid (1a) and 3-(4-(4-cyclopropylnaphthalen-1-yl)-5-ethoxy-4H-1, 2, 4-triazol-3-yl)propanoic acid (1b) are structurally interesting lead compounds in drug design. The current synthetic approach to them suffers from quite low overall yields (3.3% and 3.0% for 1a and 1b, respectively). In order to explore the structure-activity relationship (SAR) of 1a and 1b, synthetic approach with higher overall yield is urgently needed. In the present study, two efficient synthetic approaches to 1a and 1b were developed (approaches A and B), with CuCl-catalyzed nucleophilic aromatic substitution (SNAr) reaction of bromotriazole with sodium alkoxides and SNAr reaction of methylsulfonyltriazole with sodium alkoxides as key steps, and the conditions for important steps were fully optimized. The two synthetic approaches are characterized by dramatically higher yields, and not only valuable to the further SAR exploration of 1a and 1b but also very helpful to the synthesis of heterocycles with alkoxyl groups.
  • 加载中
    1. [1]

      Richette, P.; Bardin T. Lancet 2010, 375, 318.  doi: 10.1016/S0140-6736(09)60883-7

    2. [2]

      Pillinger, M. H.; Rosenthal, P.; Abeles, A. M. Bull. NYU Hosp. Jt. Dis. 2007, 65, 215.

    3. [3]

      Punzi, L.; Scanu, A.; Ramonda, R.; Oliviero, F. Autoimmun. Rev. 2012, 12, 66.  doi: 10.1016/j.autrev.2012.07.024

    4. [4]

      Choi, H. K.; Mount, D. B.; Reginato, A. M. Ann. Intern. Med. 2005, 143, 499.  doi: 10.7326/0003-4819-143-7-200510040-00009

    5. [5]

      Miao, Z.; Li, C.; Chen, Y.; Zhao, S.; Wang, Y.; Wang, Z.; Chen, X.; Xu, F.; Wang, F.; Sun, R.; Hu, J.; Song, W.; Yan, S.; Wang, C. J. Rheumatol. 2008, 35, 1859.

    6. [6]

      Dubchak, N.; Falasca, G. F. Int. J. Nephrol. Renovasc. Dis. 2010, 3, 145.

    7. [7]

      Enomoto, A.; Kimura, H.; Chairoungdua, A.; Shigeta, Y.; Jutabha, P.; Cha, S. H.; Hosoyamada, M.; Takeda, M.; Sekine, T.; Igarashi, T.; Matsuo, H.; Kikuchi, Y.; Oda, T.; Ichida, K.; Hosoya, T.; Shimokata, K.; Niwa, T.; Kanai, Y.; Endou, H. Nature 2002, 417, 447.

    8. [8]

      Adams, J. U. Nat. Biotechnol. 2009, 27, 309.  doi: 10.1038/nbt0409-309

    9. [9]

      Hoy, S. M. Drugs 2016, 76, 509.  doi: 10.1007/s40265-016-0550-y

    10. [10]

      Miner, J. N.; Tan, P. Ann. Rheum. Dis. 2013, 71, 446.

    11. [11]

      Tian, H.; Liu, W.; Zhou, Z.; Shang, Q.; Liu, Y.; Xie, Y.; Liu, C.; Xu, W.; Tang, L.; Wang, J.; Zhao, G. Molecules 2016, 21, 1543.  doi: 10.3390/molecules21111543

    12. [12]

      Zhao, M.; Li, J.; Mano, E.; Song, Z.; Tschaen, D. M.; Grabowski, E, J. J.; Reider, P. J. J. Org. Chem. 1999, 64, 2564.  doi: 10.1021/jo982143y

    13. [13]

      Hirata, K.; Kotoku, M.; Seki, N.; Maeba, T.; Maeda, K.; Hirashima, S.; Sakai, T.; Obika, S.; Hori, A.; Hase, Y.; Yamaguchi, T.; Katsuda, Y.; Hata, T.; Miyagawa, N.; Arita, K.; Nomura, Y.; Asahina, K.; Aratsu, Y.; Kamada, M.; Adachi, T.; Noguchi, M.; Doi, S.; Crowe, P.; Bradley, E.; Steensma, R.; Tao, H.; Fenn, M.; Babine, R.; Li, X.; Thacher, S.; Hashimoto, H.; Shiozaki, M. ACS Med. Chem. Lett. 2016, 7, 23.  doi: 10.1021/acsmedchemlett.5b00253

    14. [14]

      Ragan, J. A.; Makowski, T. W.; Castaldi, M. J.; Hill, P. D. Synthesis 1998, 1599.

    15. [15]

      Bonanomi, G.; Braggio, S.; Capelli, A. M.; Checchia, A.; Di Fabio, R.; Marchioro, C.; Tarsi, L.; Tedesco, G.; Terreni, S.; Worby, A.; Heibreder, C.; Micheli, F. ChemMedChem 2010, 5, 705.  doi: 10.1002/cmdc.201000026

    16. [16]

      Xie, M.; Tang, H.; Zhang, Y.; Guo, Z.; Guo, H.; Qu, G. Chin. J. Org. Chem. 2015, 35, 2589(in Chinese).
       

    17. [17]

      Fu, Y.; Zhao, X.; Hou, B. Chin. J. Org. Chem. 2016, 36, 1184(in Chinese).
       

    18. [18]

      Cai, W.; Liu, W.; Xie, Y.; Wu, J.; Liu, Y.; Liu, C.; Xu, W.; Tang, L.; Wang, J.; Zhao, G. Chem. Res. Chin. Univ. 2017, 33, 49.  doi: 10.1007/s40242-017-6351-3

    19. [19]

      Reddy, T. R.; Li, C.; Guo, X.; Fischer, P. M.; Dekker, L. V. Bioorg. Med. Chem. 2014, 22, 5378.  doi: 10.1016/j.bmc.2014.07.043

    20. [20]

      Colanceska-Ragenovic, K.; Dimova, V.; Kakurinov, V.; Gabor, D. M. J. Heterocycl. Chem. 2003, 40, 905.  doi: 10.1002/jhet.v40:5

    21. [21]

      Kane, J. M.; Staeger, M. A.; Dalton, C. R.; Miller, F. P.; Dudley, M. W.; Ogden, A. M.; Kehne, J. H.; Ketteler, H. J.; McCloskey, T. C.; Senyah, Y.; Chmielewski, P. A.; Miller, J. A. J Med Chem. 1994, 37, 125.  doi: 10.1021/jm00027a015

    22. [22]

      Ström, P.; Malmquist, J. J. Labelled Compd. Radiopharm. 2008, 51, 419.  doi: 10.1002/jlcr.v51:13

    23. [23]

      Liu, M.; Shi, D. J. Heterocycl. Chem. 2014, 51, E335.  doi: 10.1002/jhet.v51.S1

    24. [24]

      Huisgen, R.; Möbius, L.; Szeimies, G. Chem. Ber. 1965, 98, 1138.  doi: 10.1002/(ISSN)1099-0682

  • 加载中
    1. [1]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    2. [2]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    3. [3]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    4. [4]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    5. [5]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    6. [6]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    7. [7]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    8. [8]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    9. [9]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    10. [10]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    11. [11]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    12. [12]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    13. [13]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    14. [14]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    15. [15]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    18. [18]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    19. [19]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    20. [20]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

Metrics
  • PDF Downloads(3)
  • Abstract views(1818)
  • HTML views(257)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return