Citation: Zeng Ming, Song Chan, Cui Dongmei. Progress in Ruthenium-Catalyzed Dehydrogenation C—C/C—N Bonds Coupling Reactions from Alcohols[J]. Chinese Journal of Organic Chemistry, ;2017, 37(6): 1352-1367. doi: 10.6023/cjoc201701027 shu

Progress in Ruthenium-Catalyzed Dehydrogenation C—C/C—N Bonds Coupling Reactions from Alcohols

  • Corresponding author: Cui Dongmei, cuidongmei@zjut.com
  • Received Date: 13 January 2017
    Revised Date: 20 February 2017

Figures(21)

  • Ruthenium and its complex possess various catalytic activities such as oxidation and reduction. Ruthenium as a cheap and efficient catalyst was also widely used in such field as C—H activation. Considerable attention has been paid to it for its great applications in organic chemistry. The last decade's ruthenium-catalyzed deydrogenation C—N/C—C coupling reactions from acohols classified by their machanisms are summarized in this paper. Creative C—N/C—C coupling reactions are expected be designed by means of dehydrogenation catalyzed by ruthenium from acohols.
  • 加载中
    1. [1]

    2. [2]

      (a) Delgadorebollo, M.; Cansecogonzalez, D.; Hollering, M.; Muellerbunz, H.; Albrecht, M. Dalton Trans. 2014, 43, 4462.
      (b) Mastalir, M.; Tomsu, G.; Pittenauer, E.; Allmaier, G.; Kirchner, K. Org. Lett. 2016, 18, 3462.
      (c) Shiraishi, Y.; Fujiwara, K.; Sugano, Y.; Ichikawa, S.; Hirai, T. ACS Catal. 2013, 3, 312.
      (d) Dang, T. T.; Ramalingam, B.; Shan, S. P.; Seayad, A. M. ACS Catal. 2013, 3, 2536.
      (e) Zhang, Y.; Qi, X.-J.; Cui, X.-J.; Shi, F.; Deng, Y.-Q. Tetrahedron Lett. 2011, 52, 1334.
      (f) Shimizu, K. I.; Shimura, K.; Nishimura, M.; Satsuma, A. RSC Adv. 2011, 1, 1310.
      (g) Shimizu, K. I.; Imaiida, N.; Kon, K.; Siddiki, S. M. A. H.; Satsuma, A. ACS Catal. 2013, 3, 998.
      (h) Rawlings, A. J.; Diorazio, L. J.; Wills, M. Org. Lett. 2015, 17, 1086.
      (i) Bhat, S.; Sridharan, V. Chem. Commun. 2012, 48, 4701.
      (j) Yang, Q.; Wang, Q.-F.; Yu, Z.-K. Chem. Soc. Rev. 2015, 44, 2305.
      (k) Xiong, B.; Zhang, S.-D.; Jiang, H.-F.; Zhang, M. Org. Lett. 2016, 18, 724.

    3. [3]

      (a) Nandakumar, A.; Midya, S. P.; Landge, V. G.; Balaraman, E. Angew. Chem., Int. Ed. 2015, 54, 11022.
      (b) Huang, F.; Liu, Z.; Yu, Z. Angew. Chem., Int. Ed. 2016, 55, 862.

    4. [4]

      Tseng, K.-N. T.; Kampf, J. W.; Szymczak, N. K. ACS Catal. 2015, 5, 5468.  doi: 10.1021/acscatal.5b00952

    5. [5]

      (a) Patil, N. M.; Kelkar, A. A.; Nabi, Z.; Chaudhari, R. V. Chem. Commun. 2004, 35, 2368.
      (b) Hirai, Y.; Uozumi, Y. Chem. Commun. 2010, 46, 1103.
      (c) Moghaddam, F. M.; Tavakoli, G.; Moafi, A.; Saberi, V.; Rezvani, H. R. ChemCatChem 2015, 6, 3474.
      (d) Li, S.-G.; Deng, G.-J.; Yin, F.-F.; Li, C.-J.; Gong, H. Org. Chem. Front. 2017, 4, 417.
      (e) Fairlamb, I. J.; Kapdi, A. R.; Lee, A. F.; Mcglacken, G. P.; Weissburger, F.; de Vries, A. H.; Schmieder-Van, D. V. L. Chem.-Eur. J. 2006, 12, 8750.
      (f) Li, J.-X.; Hu, W.-G.; Li, C.-S.; Yang, S.-R.; Wu, W.-Q.; Jiang, H.-F. Org. Chem. Front. 2017, 4, 373.
      (g) Barot, N.; Patel, S. B.; Kaur, H. J. Mol. Catal. A: Chem. 2016, 423, 77.
      (h) Zhang, C.; Li, T.-L.; Wang, L.-G.; Rao, Y. Org. Chem. Front. 2017, 4, 386.
      (i) Dutta, J.; Richmond, M. G.; Bhattacharya, S. Dalton Trans. 2015, 44, 13615.
      (j) Lin, W.-H.; Wu, W.-C.; Selvaraju, M.; Sun, C.-M. Org. Chem. Front. 2017, 4, 392.

    6. [6]

      (a) Chan, L. K. M.; Poole, D. L.; Shen, D.; Healy, M. P.; Donohoe, T. J. Nat. Chem. 2011, 3, 287.
      (b) Serk, K. M.; Namdu, K.; Hyeok, S. S.; Soo, P. I.; Kumar, C. R.; Jaiwook, P. Angew. Chem., Int. Ed. 2005, 44, 6913.
      (c) Anxionnat, B.; Gomez Pardo, D.; Ricci, G.; Rossen, K.; Cossy, J. Org. Lett. 2013, 15, 3876.
      (d) Chan, L. K. M.; Poole, D. L.; Shen, D.; Healy, M. P.; Donohoe, T. J. Angew. Chem., Int. Ed. 2014, 53, 761.
      (e) Alonso, F.; Riente, P.; Sirvent, J. A.; Yus, M. Appl. Catal. A 2010, 378, 42.
      (f) Fujita, K. I.; Yoshida, T.; Imori, Y.; Yamaguchi, R. Org. Lett. 2011, 13, 2278.
      (g) Yu, X.; Wang, Q.-Y.; Wu, Q.-J.; Wang, D.-W. Russ. J. Gen. Chem. 2016, 86, 178.
      (h) Rösler, S.; Ertl, M.; Irrgang, T.; Kempe, R. Angew. Chem., Int. Ed. 2015, 54, 15046.
      (i) Saidi, O.; Blacker, A. J.; Farah, M. M.; Marsden, S. P.; Williams, J. M. J. Angew. Chem., Int. Ed. 2009, 48, 7375.
      (j) Qu, P.-P.; Sun, C.-L.; Ma, J.; Li, F. Adv. Synth. Catal. 2014, 356, 447.
      (k) Michlik, S.; Kempe, R. Angew. Chem., Int. Ed. 2013, 52, 6326.
      (l) Kawahara, R.; Fujita, K.-i.; Yamaguchi, R. Adv. Synth. Catal. 2011, 353, 1161.
      (m) Wang, R.-Z.; Ma, J.; Li, F. J. Org. Chem. 2015, 80, 10769.
      (n) Wang, D.-W.; Zhao, K.-Y.; Xu, C.-Y.; Miao, H.-Y.; Ding, Y.-Q. ACS Catal. 2014, 4, 3910.
      (o) Saidi, O.; Blacker, A. J.; Farah, M. M.; Marsden, S. P.; Williams, J. M. Chem. Commun. 2010, 46, 1541.
      (p) Hille, T.; Irrgang, T.; Kempe, R. Angew. Chem., Int. Ed. 2017, 56, 371.
      (q) Elangovan, S.; Sortais, J. B.; Beller, M.; Darcel, C. Angew. Chem., Int. Ed. 2016, 54, 14483.
      (r) Yu, X.-L.; Zhao, R.-R.; Wan, H.-D.; Yang, Y.-C.; Wang, D.-W. Tetrahedron Lett. 2016, 57, 4588.
      (s) Yamaguchi, R.; Zhu, M.-W.; Kawagoe, S.; Asai, C.; Fujita, K. I. Synthesis 2009, 1220.
      (t) Wang, D.-W.; Zhao, K.-Y.; Yu, X.; Miao, H.-Y.; Ding, Y.-Q. RSC Adv. 2014, 46, 42924.
      (u) Saidi, O.; Blacker, A. J.; Lamb, G. W.; Marsden, S. P.; Taylor, J. E.; Williams, J. M. J. Org. Process Res. Dev. 2010, 14, 1046.
      (v) Lu, L.; Ma, J.; Qu, P.-P.; Li, F. Org. Lett. 2015, 17, 2350.
      (w) Yamaguchi, R.; Kawagoe, S.; Asai, C.; Fujita, K. Org. Lett. 2008, 10, 181.
      (x) Li, F.; Ma, J.; Wang, N. J. Org. Chem. 2014, 46, 10447.
      (y) Deibl, N.; Ament, K.; Kempe, R. J. Am. Chem. Soc. 2015, 137, 12804.
      (z) Kawahara, R.; Fujita, K.; Yamaguchi, R. J. Am. Chem. Soc. 2010, 132, 15108.
      (aa) Li, F.; Shan, H.; Chen, L.; Kang, Q.; Zou, P. Chem. Commun. 2011, 43, 603.
      (ab) Peña-López, M.; Piehl, P.; Elangovan, S.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2016, 55, 14967.
      (ac) Elangovan, S.; Neumann, J.; Sortais, J. B.; Junge, K.; Darcel, C.; Beller, M. Nat. Commun. 2016, 7, 12641.
      (ad) Deibl, N.; Kempe, R. Angew. Chem., Int. Ed. 2017, 56, 1663.
      (ae) Wang, N.-N.; Zou, X.-Y.; Ma, J.; Li, F. Chem. Commun. 2014, 50, 8303.
      (af) Michlik, S.; Kempe, R. Nat. Chem. 2013, 5, 140.

    7. [7]

      Sindhuja, E.; Ramesh, R. Tetrahedron Lett. 2014, 55, 5504.  doi: 10.1016/j.tetlet.2014.08.035

    8. [8]

      Tanabe, Y.; Kuriyama, S.; Arashiba, K.; Nakajima, K.; Nishibayashi, Y. Organometallics 2014, 33, 5295.  doi: 10.1021/om5006116

    9. [9]

      Rigoli, J. W.; Moyer, S. A.; Pearce, S. D.; Schomaker, J. M. Org. Biomol. Chem. 2012, 10, 1746.  doi: 10.1039/c2ob06921k

    10. [10]

      Bauer, J. O.; Leitus, G.; Ben-David, Y.; Milstein, D. ACS Catal. 2016, 6, 8415.  doi: 10.1021/acscatal.6b02946

    11. [11]

      Kondo, T.; Yang, S.; Huh, K. T.; Kobayashi, M.; Kotachi, S.; Watanabe, Y. Chem. Lett. 1991, 20, 1275.  doi: 10.1246/cl.1991.1275

    12. [12]

      Blacker, A. J.; Farah, M. M.; Hall, M. I.; Marsden, S. P.; Saidi, O.; Williams, J. M. J. Org. Lett. 2009, 11, 2039.  doi: 10.1021/ol900557u

    13. [13]

      Khalafi-Nezhad, A.; Panahi, F. ACS Catal. 2014, 4, 1686.  doi: 10.1021/cs5000872

    14. [14]

      Tsuji, Y.; Kotachi, S.; Huh, K. T.; Watanabe, Y. J. Org. Chem. 1990, 55, 580.  doi: 10.1021/jo00289a036

    15. [15]

      Izumi, T.; Yokota, T. J. Heterocycl. Chem. 1992, 29, 1085.  doi: 10.1002/jhet.v29:5

    16. [16]

      Shimura, S.; Miura, H.; Wada, K.; Hosokawa, S.; Yamazoe, S.; Inoue, M. Catal. Sci. Technol. 2011, 1, 1340.  doi: 10.1039/c1cy00235j

    17. [17]

      (a) Marco-Contelles, J.; Pérez-Mayoral, E.; Samadi, A.; Carreiras, M. C.; Soriano, E. Chem. Rev. 2009, 109, 2652.
      (b) Martínez, R.; Ramón, D. J.; Yus, M. J. Org. Chem. 2008, 73, 9778.
      (c) Venkatesan, H.; Hocutt, F. M.; Jones, T. K.; Rabinowitz, M. H. J. Org. Chem. 2010, 75, 3488.

    18. [18]

      Chen, M.-M.; Zhang, M.; Xiong, B.; Tan, Z.-D.; Lv, W.; Jiang, H.-F. Org. Lett. 2014, 16, 6028.  doi: 10.1021/ol503052s

    19. [19]

      Monrad, R. N.; Madsen, R. Org. Biomol. Chem. 2011, 9, 610.  doi: 10.1039/C0OB00676A

    20. [20]

      Porcheddu, A.; Mura, M. G.; De Luca, L.; Pizzetti, M.; Taddei, M. Org. Lett. 2012, 14, 6112.  doi: 10.1021/ol3030956

    21. [21]

      Xie, F.; Chen, M.-M.; Wang, X.-T.; Jiang, H.-F.; Zhang, M. Org. Biomol. Chem. 2014, 12, 2761.  doi: 10.1039/C3OB42589D

    22. [22]

      Zeng, M.; Wang, T.; Cui, D.-M.; Zhang, C. New J. Chem. 2016, 40, 8225.  doi: 10.1039/C6NJ01620K

    23. [23]

      Mura, M. G.; De Luca, L.; Taddei, M.; Williams, J. M. J.; Porcheddu, A. Org. Lett. 2014, 16, 2586.  doi: 10.1021/ol500916g

    24. [24]

      Iida, K.; Miura, T.; Ando, J.; Saito, S. Org. Lett. 2013, 15, 1436.  doi: 10.1021/ol4001262

    25. [25]

      (a) Srimani, D.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2013, 52, 4012.
      (b) Srimani, D.; Ben-David, Y.; Milstein, D. Chem. Commun. 2013, 49, 6632.

    26. [26]

      (a) Zhang, M.; Fang, X. J.; Neumann, H.; Beller, M. J. Am. Chem. Soc. 2013, 135, 11384.
      (b) Zhang, M.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 597.

    27. [27]

      Pan, B.; Liu, B.; Yue, E.-L.; Liu, Q.-B.; Yang, X.-Z.; Wang, Z.; Sun, W.-H. ACS Catal. 2016, 6, 1247.  doi: 10.1021/acscatal.5b02638

    28. [28]

      (a) Chen, T.-Y.; Tsutsumi, R.; Montgomery, T. P.; Volchkov, I.; Krische, M. J. J. Am. Chem. Soc. 2015, 137, 1798.
      (b) Mcinturff, E. L.; Yamaguchi, E.; Krische, M. J. J. Am. Chem. Soc. 2012, 134, 20628.
      (c) Zbieg, J. R.; Yamaguchi, E.; Mcinturff, E. L.; Krische, M. J. Science 2012, 336, 324.

    29. [29]

      Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J. Org. Lett. 2009, 11, 2667.  doi: 10.1021/ol900723v

    30. [30]

      Watson, A. J. A.; Wakeham, R. J.; Maxwell, A. C.; Williams, J. M. J. Tetrahedron 2014, 70, 3683.  doi: 10.1016/j.tet.2014.04.017

    31. [31]

      Ortega, N.; Richter, C.; Glorius, F. Org. Lett. 2013, 15, 1776.  doi: 10.1021/ol400639m

    32. [32]

      Oldenhuis, N. J.; Dong, V. M.; Guan, Z. Tetrahedron 2014, 70, 4213.  doi: 10.1016/j.tet.2014.03.085

    33. [33]

      Nova, A.; Balcells, D.; Schley, N. D.; Dobereiner, G. E.; Crabtree, R. H.; Eisenstein, O. Organometallics 2010, 29, 6548.  doi: 10.1021/om101015u

    34. [34]

      Kim, J.; Hong, S. H. Org. Lett. 2014, 16, 4404.  doi: 10.1021/ol501835t

    35. [35]

      Hamid, M. H. S. A.; Williams, J. M. J. Chem. Commun. 2007, 38, 725.

    36. [36]

      Hamid, M. H.; Allen, C. L.; Lamb, G. W.; Maxwell, A. C.; Maytum, H. C.; Watson, A. J.; Williams, J. M. J. Am. Chem. Soc. 2009, 131, 1766.  doi: 10.1021/ja807323a

    37. [37]

      Yamaguchi, K.; He, J.; Oishi, T.; Mizuno, N. Chem. Eur. J. 2010, 16, 7199.  doi: 10.1002/chem.201000149

    38. [38]

      Bähn, S.; Imm, S.; Mevius, K.; Neubert, L.; Tillack, A.; Williams, J. M. J.; Beller, M. Chem. Eur. J. 2010, 16, 3590.  doi: 10.1002/chem.v16:12

    39. [39]

      Imm, S.; Baehn, S.; Zhang, M.; Neubert, L.; Neumann, H.; Klasovsky, F.; Pfeffer, J.; Haas, T.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 7599.  doi: 10.1002/anie.201103199

    40. [40]

      Balaraman, E.; Srimani, D.; Diskin-Posner, Y.; Milstein, D. Catal. Lett. 2014, 145, 139.

    41. [41]

      Zhang, M.; Imm, S.; Bähn, S.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 11197.  doi: 10.1002/anie.v50.47

    42. [42]

      Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J. J. Org. Chem. 2011, 76, 2328.  doi: 10.1021/jo102521a

    43. [43]

      Ma, W.-M.; James, T. D.; Williams, J. M. Org. Lett. 2013, 15, 4850.  doi: 10.1021/ol402271a

    44. [44]

      Chen, M.-M.; Zhang, M.; Xie, F.; Wang, X.-T.; Jiang, H.-F. ChemCatChem 2014, 6, 2993.  doi: 10.1002/cctc.v6.10

    45. [45]

      Enyong, A. B.; Moasser, B. J. Org. Chem. 2014, 79, 7553.  doi: 10.1021/jo501273t

    46. [46]

      Broomfield, L. M.; Wu, Y. C.; Martin, E.; Shafir, A. Adv. Synth. Catal. 2015, 357, 3538.  doi: 10.1002/adsc.201500562

    47. [47]

      Dang, T.-T.; Ramalingam, B.; Seayad, A. M. ACS Catal. 2015, 5, 4082.  doi: 10.1021/acscatal.5b00606

    48. [48]

      Shan, S. P.; Xie, X.-K.; Gnanaprakasam, B.; Dang, T. T.; Ramalingam, B.; Huynh, H. V.; Seayad, A. M. RSC Adv. 2015, 5, 4434.  doi: 10.1039/C4RA15398G

    49. [49]

      Rajaraman, A.; Sahoo, A. R.; Hild, F.; Fischmeister, C.; Achard, M.; Bruneau, C. Dalton Trans. 2015, 44, 17467.  doi: 10.1039/C5DT02867A

    50. [50]

    51. [51]

      Marichev, K. O.; Takacs, J. M. ACS Catal. 2016, 6, 2205.  doi: 10.1021/acscatal.6b00175

    52. [52]

      Pagliaro, M.; Rossi, M. The Future of Glycerol, Royal Society of Chemistry, 2010.

    53. [53]

      Said Stålsmeden, A.; Belmonte Vázquez, J. L.; van Weerdenburg, K.; Rae, R.; Norrby, P.-O.; Kann, N. ACS Sustainable Chem. Eng. 2016, 4, 5730.  doi: 10.1021/acssuschemeng.6b01659

    54. [54]

      Shi, F.; Tse, M. K.; Zhou, S.; Pohl, M. M.; Radnik, J.; Hübner, S.; Jähnisch, K.; Brückner, A.; Beller, M. J. Am. Chem. Soc. 2009, 131, 1775.  doi: 10.1021/ja807681v

    55. [55]

      Mako, T. L.; Byers, J. A. Inorg. Chem. Front. 2016, 3, 766.  doi: 10.1039/C5QI00295H

    56. [56]

      Oldenhuis, N. J.; Dong, V. M.; Guan, Z. J. Am. Chem. Soc. 2014, 136, 12548.  doi: 10.1021/ja5058482

    57. [57]

      Yang, L.-C.; Wang, Y.-N.; Zhang, Y.; Zhao, Y. ACS Catal. 2017, 7, 93.  doi: 10.1021/acscatal.6b02959

    58. [58]

      Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J. Org. Biomol. Chem. 2012, 10, 240.  doi: 10.1039/C1OB06516E

    59. [59]

      Xiong, B.; Li, Y.; Lv, W.; Tan, Z.-D.; Jiang, H.-F.; Zhang, M. Org. Lett. 2016, 47, 4054.

    60. [60]

      Xiong, B.; Zhang, S.-D.; Chen, L.; Li, B.; Jiang, H.-F.; Zhang, M. Chem. Commun. 2016, 52, 10636.  doi: 10.1039/C6CC05329G

    61. [61]

      Peña-López, M.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2016, 55, 7826.  doi: 10.1002/anie.201600698

    62. [62]

      (a) Yang, H.-Q.; Shen, R.; Deng, G.-J. Chin. J. Org. Chem. 2012, 32, 1725 (in Chinese).
      (杨辉琼, 谌儒, 邓国军, 有机化学, 2012, 32, 1725.)
      (b) Neumann, J.; Bornschein, C.; Jiao, H.; Junge, K.; Beller, M. Eur. J. Org. Chem. 2015, 2015, 5944.

    63. [63]

      Feng, C.; Liu, Y.; Peng, S.-M.; Shuai, Q.; Deng, G.-J.; Li, C.-J. Org. Lett. 2010, 12, 4888.  doi: 10.1021/ol1020527

    64. [64]

      Li, H.-J.; Wang, C.-C.; Zhu, S.; Dai, C.-Y.; Wu, Y.-C. Adv. Synth. Catal. 2015, 357, 583.  doi: 10.1002/adsc.201400898

    65. [65]

      Xie, F.; Zhang, M.; Chen, M.-M.; Lv, W.; Jiang, H.-F. ChemCatChem 2015, 7, 349.  doi: 10.1002/cctc.201402832

    66. [66]

      Xie, F.; Zhang, M.; Jiang, H.-F.; Chen, M.-M.; Lv, W.; Zheng, A.-B.; Jian, X.-J. Green Chem. 2015, 17, 279.  doi: 10.1039/C4GC01316F

    67. [67]

      Deibl, N.; Kempe, R. J. Am. Chem. Soc. 2016, 138, 10786.  doi: 10.1021/jacs.6b06448

    68. [68]

      Cho, C. S.; Kim, B. T.; Kim, T.-J.; Chul Shim, S. Tetrahedron Lett. 2002, 43, 7987.  doi: 10.1016/S0040-4039(02)01625-8

    69. [69]

      Yan, F.-X.; Zhang, M.; Wang, X.-T.; Xie, F.; Chen, M.-M.; Jiang, H.-F. Tetrahedron 2014, 70, 1193.  doi: 10.1016/j.tet.2013.12.065

    70. [70]

      Kuwahara, T.; Fukuyama, T.; Ryu, I. Org. Lett. 2012, 14, 4703.  doi: 10.1021/ol302145a

    71. [71]

      Kuwahara, T.; Fukuyama, T.; Ryu, I. RSC Adv. 2013, 3, 13702.  doi: 10.1039/c3ra42834f

    72. [72]

      Schlepphorst, C.; Maji, B.; Glorius, F. ACS Catal. 2016, 6, 4184.  doi: 10.1021/acscatal.6b01351

    73. [73]

      Chaudhari, M. B.; Bisht, G. S.; Kumari, P.; Gnanaprakasam, B. Org. Biomol. Chem. 2016, 14, 9215.  doi: 10.1039/C6OB01786J

    74. [74]

      Cini, E.; Petricci, E.; Truglio, G. I.; Vecchio, M.; Taddei, M. RSC Adv. 2016, 6, 31386.  doi: 10.1039/C6RA03585J

    75. [75]

      Sik Cho, C.; Kim, B. T.; Taejeong Kim, A.; Sang, C. S. J. Org. Chem. 2001, 66, 9020.  doi: 10.1021/jo0108459

    76. [76]

      Li, Y.; Li, H. Q.; Junge, H.; Beller, M. Chem. Commun. 2014, 50, 14991.  doi: 10.1039/C4CC06933A

    77. [77]

      Wang, Q.-F.; Wu, K.-K.; Yu, Z.-K. Organometallics 2016, 35, 1251.  doi: 10.1021/acs.organomet.6b00130

    78. [78]

      Chakrabarti, K.; Paul, B.; Maji, M.; Roy, B. C.; Shee, S.; Kundu, S. Org. Biomol. Chem. 2016, 14, 10988.  doi: 10.1039/C6OB02010K

    79. [79]

      Takashi, A. M. J.; Takahide, F.; Ilhyong, R. Chem. Lett. 2013, 42, 1163.  doi: 10.1246/cl.130465

    80. [80]

      Pena-Lopez, M.; Neumann, H.; Beller, M. Chem. Commun. 2015, 51, 13082.  doi: 10.1039/C5CC01708D

  • 加载中
    1. [1]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    2. [2]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    3. [3]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    4. [4]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    5. [5]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    8. [8]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    9. [9]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    10. [10]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    11. [11]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    12. [12]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    13. [13]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    14. [14]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    15. [15]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    16. [16]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    17. [17]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    18. [18]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    19. [19]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    20. [20]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

Metrics
  • PDF Downloads(13)
  • Abstract views(3059)
  • HTML views(696)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return