Citation: Qi Haitang, Song Guanglin, Quan Zhengjun, Wang Xicun. CuSO4·5H2O/NaAsc-Catalyzed Sonogashira Coupling Reaction of Aryl Iodides and Terminal Alkynes[J]. Chinese Journal of Organic Chemistry, ;2017, 37(7): 1855-1859. doi: 10.6023/cjoc201701013 shu

CuSO4·5H2O/NaAsc-Catalyzed Sonogashira Coupling Reaction of Aryl Iodides and Terminal Alkynes

  • Corresponding author: Quan Zhengjun, quanzhengjun@hotmail.com Wang Xicun, wangxicun@nwnu.edu.cn
  • Received Date: 5 January 2017
    Revised Date: 22 February 2017
    Available Online: 14 July 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21362032, 21362031)the National Natural Science Foundation of China 21362032the National Natural Science Foundation of China 21362031

Figures(1)

  • In this paper, the homogeneous catalytic system of CuSO4·5H2O/NaAsc was used to realize the Sonogashira reaction of aryl iodides and terminal alkynes. This catalytic system replaces the general catalytic system of Pd/Cu-bound phosphorus ligand, which has the advantages of cheap catalyst, simple post-treatment, reaction under homogeneous conditions, and meets the requirements of green chemistry.
  • 加载中
    1. [1]

      Diek, H. A.; Heck, F. R. J. Organomet. Chem. 1975, 93, 259.  doi: 10.1016/S0022-328X(00)94049-X

    2. [2]

      Cassar, L. J. Organomet. Chem. 1975, 93, 253.  doi: 10.1016/S0022-328X(00)94048-8

    3. [3]

      Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467.  doi: 10.1016/S0040-4039(00)91094-3

    4. [4]

      (a) Wang, D.; Gao, S. H. Org. Chem. Front. 2014, 1, 556.
      (b) Paterson, I.; Davies, R. D. M.; Marquez, R. Angew. Chem., Int. Ed. 2001, 40, 603.
      (c) Paterson, I.; Paquet, T. Org. Lett. 2010, 12, 2158.
      (d) Taunton, J.; Wood, J. L.; Schreiber, S. L. J. Am. Chem. Soc. 1993, 115, 10378.
      (e) Myers, A. G.; Hogan, P. C.; Hurd, A. R.; Goldberg, S. D. Angew. Chem., Int. Ed. 2002, 41, 1062.
      (f) Koyama, Y.; Lear, M. J.; Mashimo, T.; Hirama, M. Org. Lett. 2005, 7, 267.

    5. [5]

      (a) Erdélyi, M.; Gogoll, A. J. Org. Chem. 2003, 68, 6431.
      (b) Elangovan, A.; Wang, Y. H.; Ho, T. I. Org. Lett. 2003, 5, 1841.
      (c) Cranwell, P. B.; Peterson, A. M.; Littlefield, B. T. R.; Russell, A.T. J. Chem. Ed. 2015, 92, 1110.

    6. [6]

      Wen, T. M.; Xie, J. Y.; Feng, R. G.; Huang, X. M. Chin. J. Org. Chem. 2015, 35, 735(in Chinese).
       

    7. [7]

      García, D.; Cuadro, A. M.; Builla, J. A.; Vaquero, J. J. Org. Lett. 2004, 6, 4175.  doi: 10.1021/ol048368e

    8. [8]

      Bakherad, M. Appl. Organomet. Chem. 2013, 27, 125.  doi: 10.1002/aoc.2931

    9. [9]

      Christopher, W.; Gallop, D.; Chen, M. T.; Navarro, O. Org. Lett. 2014, 16, 3724.  doi: 10.1021/ol501540w

    10. [10]

      (a) Xu, W.; Sun, H. M.; Yu, B.; Zhang, G. F.; Zhang, W. Q.; Gao, Z. W. Appl. Mater. Interf. 2014, 6, 20261.
      (b) Diyarbakir, S.; Can, H.; Metin, O. Appl. Mater. Interf. 2015, 7, 3199.

    11. [11]

      Ren, X.; Kong, S.; Shu, Q.; Shu, M. Chin. J. Chem. 2016, 34, 373.  doi: 10.1002/cjoc.201500797

    12. [12]

      Sikk, L.; Taul, J. T.; Burk, P. Organometallics 2011, 30, 5656.  doi: 10.1021/om2004817

    13. [13]

      (a) Prabhu, R. N.; Pal, S. Tetrahedron Lett. 2015, 56, 5252.
      (b) Huang, H.; Liu, H.; Jiang, H. L.; Chen, K. X. J. Org. Chem. 2008, 73, 6037.
      (c) Fukuyama, T.; Shinmen, M.; Nishitani, S.; Sato, M.; Ryu, I. Org. Lett. 2002, 4, 1691.

    14. [14]

      Carnavalet, B. D. C.; Archambeau, A.; Meyer, C.; Cossy, J.; Folléas, B.; Brayer, J. L.; Demoute, J. P. Org. Lett. 2011, 13, 956.  doi: 10.1021/ol1029996

    15. [15]

      Zhang, G.; Zhang, W.; Luan, Y.; Han, X.; Ding C. Chin. J. Chem. 2015, 33, 705.  doi: 10.1002/cjoc.v33.7

    16. [16]

      (a) Hu, H.; Yang, F.; Wu, Y. J. J. Org. Chem. 2013, 78, 10506.
      (b) Liang, B.; Dai, M. J.; Chen, J. H.; Yang, Z. J. Org. Chem. 2005, 70, 391.
      (c) Gogoi, A.; Dewana, A.; Bora, U. RSC Adv. 2015, 5, 16.
      (d) Liang, Y.; Xie, Y. X.; Li, J. H. J. Org. Chem. 2006, 71, 379.
      (e) Pu, X. T.; Li, H. B.; Colacot, T. J. J. Org. Chem. 2013, 78, 568.
      (f) Pérez, A. L.; Meseguer, J. O.; Marqués, P. R.; Corma, A. Angew. Chem., Int. Ed. 2013, 52, 11554.

    17. [17]

      Lauterbach, T.; Livendahl, M.; Rosellón, A; Espinet, P.; Echavarren, A. M. Org. Lett. 2010, 12, 3006.  doi: 10.1021/ol101012n

    18. [18]

      Okuro, K.; Furuune, M.; Enna, M.; Miura, M.; Nomura, M. J. Org. Chem. 1993, 58, 4716.  doi: 10.1021/jo00069a040

    19. [19]

      (a) Lin, C. H.; Wang, Y. J.; Lee, C. F. Eur. J. Org. Chem. 2010, 4368.
      (b) Kotovshchikov, Y. N.; Latyshev, G. V.; Lukashev, N. V.; Beletskaya, I. P. Org. Biomol. Chem. 2015, 13, 5542.
      (c) Bates, C. G.; Saejueng, P.; Venkataraman, D. Org. Lett. 2004, 6, 1441.
      (d) Gujadhur, R. K.; Bates, C. G.; Venkataraman, D. Org. Lett. 2001, 3, 4315.

    20. [20]

      (a) Ma, D. W.; Liu, F. Chem. Commun. 2004, 1934.
      (b) Liu, F.; Ma, D. W. J. Org. Chem. 2007, 72, 4844.
      (c) Santandrea, J.; Bédard, A. C.; Collins, S. K. Org. Lett. 2014, 16, 3892.

    21. [21]

      Wu, M. Y.; Mao, J. C.; Guo, J.; Ji, S. J. Eur. J. Org. Chem. 2008, 4050.

    22. [22]

      (a) Messeguer, J. O.; Liu, L.; García, S. G.; Giménez, C. C.; Domínguez, I.; Gavara, R.; Carbó, A. D.; Concepción, P.; Pérez, A. L.; Corma, A. J. Am. Chem. Soc. 2015, 137, 3894.

    23. [23]

      He, H.; Wu, Y. J. Tetrahedron Lett. 2004, 45, 3237.  doi: 10.1016/j.tetlet.2004.02.124

    24. [24]

      Monnier, F.; Turtaut, F.; Duroure, L.; Taillefer, M. Org. Lett. 2008, 10, 3203.
      (b) Nakane, T.; Tanioka, Y.; Tsukada, N. Organometallics 2015, 34, 1191.

    25. [25]

      Carril, M.; Correa, A.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 4862.  doi: 10.1002/(ISSN)1521-3773

    26. [26]

      (a) Wang, M.; Li, P. H.; Wang, L. Synth. Commun. 2004, 34, 2803.
      (b) Wang, L.; Li, P. H.; Zhang, Y. C. Chem. Commun. 2004, 514.

    27. [27]

      (a) Quan, Z. J.; Xu, Q.; Zhang, Z.; Da, Y. X.; Wang, X. C. Tetrahedron 2013, 69, 881.
      (b) Quan, Z. J.; Xia, H. D.; Zhang, Z.; Da, Y. X.; Wang, X. C. Tetrahedron 2013, 69, 8368.
      (c) Quan, Z. J.; Xia, H. D.; Zhang, Z.; Da, Y. X.; Wang, X. C. Chin. J. Chem. 2013, 31, 501.
      (d) Song, G. L.; Zhang, Z.; Da, Y. X.; Wang, X. C. Tetrahedron 2015, 71, 8823.

    28. [28]

      (a) Kuhn, P.; Alix, A.; Kumarraja, M.; Louis, B.; Pale, P.; Sommer, J. Eur. J. Org. Chem. 2009, 423.
      (b) Peng, H. H; Xi, Y. M.; Ronaghi, N.; Dong, B.; Akhmedov, N. G.; Shi, X. D. J. Am. Chem. Soc. 2014, 136, 13174.
      (c) Weng, Y.; Cheng, B.; He, C.; Lei, A. W. Angew. Chem., Int. Ed. 2012, 51, 9547.

    29. [29]

      (a) Wu, M. Y.; Mao, J. C.; Guo, J.; Jun, S. Eur. J. Org. Chem. 2008, 4050.
      (b) Gujadhur, R. K. Bates, C. G.; Venkataraman, D. Org. Lett. 2001, 3, 4315.

    30. [30]

      Magagnano, G.; Gualandi, A.; Marchini, M.; Mengozzi, L.; Ceroni, P.; Cozzi, P. G. Chem. Commun. 2017, 53, 1591.  doi: 10.1039/C6CC09387F

  • 加载中
    1. [1]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    2. [2]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    3. [3]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    4. [4]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    5. [5]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    6. [6]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    7. [7]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    8. [8]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    9. [9]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    10. [10]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    11. [11]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    12. [12]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    13. [13]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    17. [17]

      Lin Ding Jinpeng Zhang Junfeng Li Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064

    18. [18]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    19. [19]

      Jianjun Fang Kunchen Xie Yongli Song Kangyi Zhang Fei Xu Xiaoze Shi Ming Ren Minzhi Zhan Hai Lin Luyi Yang Shunning Li Feng Pan . Break the capacity limit of Li4Ti5O12 anodes through oxygen vacancy engineering. Chinese Journal of Structural Chemistry, 2025, 44(2): 100504-100504. doi: 10.1016/j.cjsc.2024.100504

    20. [20]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

Metrics
  • PDF Downloads(18)
  • Abstract views(2057)
  • HTML views(402)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return