Citation: Chen Liang, Wang Baoqu, Zhao Yucheng, Yan Shengjiao, Lin Jun. One-Pot Synthesis of Multisubstituted Chromone-Fused Bicyclic Pyridine Compounds[J]. Chinese Journal of Organic Chemistry, ;2017, 37(6): 1433-1442. doi: 10.6023/cjoc201612038 shu

One-Pot Synthesis of Multisubstituted Chromone-Fused Bicyclic Pyridine Compounds

  • Corresponding author: Yan Shengjiao, yansj@ynu.edu.cn Lin Jun, linjun@ynu.edu.cn
  • Received Date: 12 December 2016
    Revised Date: 21 January 2017

    Fund Project: the National Natural Science Foundation of China U1202221the Talent Found in Yunnan Province 2012HB001the National Natural Science Foundation of China 21362042the National Natural Science Foundation of China 21662042the National Natural Science Foundation of China 21262042the Excellent Young Talents of Yunnan University XT412003

Figures(1)

  • A concise and environment friendly route for the synthesis of multisubstituted chromone-fused bicyclic pyridine compounds via one-step reaction of chromone-3-carboxaldehyde 1 and N-benzyl nitro ketene aminals (NBNKAs, 2) in ethanol media has been developed. The targeted compounds 3 can efficiently obtain by filter without extra post-treatment. The reaction is particularly attractive due to following features: low-cost and biocompatibility solvent, mild temperature, atom economy, high yields, and potential biological activity.
  • 加载中
    1. [1]

      Hunt, A. J.; Sin, E. H. K.; Marriott, R.; Clark, J. H. CHemSusChem 2010, 3, 306.  doi: 10.1002/cssc.200900169

    2. [2]

      Agana, B. A.; Reeve, D.; Orbell, J. D. J Environ. Manage. 2013, 114, 445.  doi: 10.1016/j.jenvman.2012.10.047

    3. [3]

      Marr, P. C.; Marr, A. C. Green Chem. 2016, 18, 105.  doi: 10.1039/C5GC02277K

    4. [4]

      Marteel-Parrish, A. E. J. Chem. Educ. 2014, 91, 1084.  doi: 10.1021/ed400393b

    5. [5]

      Trost, B. M. Science 1991, 254, 1471.  doi: 10.1126/science.1962206

    6. [6]

      Misono, M. Yuki Gosei Kagaku Kyokaishi 2003, 61, 406.  doi: 10.5059/yukigoseikyokaishi.61.406

    7. [7]

      Hartman, G. J.; Jin, Q. Z.; Collins, G. J.; Lee, K. N.; Ho, C. T.; Chang, S. S. J. Agric. Food Chem. 1983, 31, 1030.  doi: 10.1021/jf00119a027

    8. [8]

      Ren, T.; Liu, W.; Xue, Q.; Wang, H. Lubr. Sci. 1993, 5, 205.  doi: 10.1002/(ISSN)1557-6833

    9. [9]

      Ueda, Y.; Connolly, T. P.; Kadow, J. F.; Meanwell, N. A.; Wang, T.; Chen, C.-P. H.; Yeung, K.-S.; Zhang, Z.; Leahy, D. K.; Pack, S. K.; Soundararajan, N.; Sirard, P.; Levesque, K.; Thoraval, D. US 20050209246, 2005[Chem. Abstr. 2005, 143, 306343].

    10. [10]

      Garuti, L.; Roberti, M.; Pizzirani, D. Mini-Rev. Med. Chem. 2007, 7, 481.  doi: 10.2174/138955707780619626

    11. [11]

      Schultz, C.; Link, A.; Leost, M.; Zaharevitz, D. W.; Gussio, R.; Sausville, E. A.; Meijer, L.; Kunick, C. J. Med. Chem. 1999, 42, 2909.  doi: 10.1021/jm9900570

    12. [12]

      Pluta, K.; Morak-Mlodawska, B.; Jelen, M. Eur. J. Med. Chem. 2011, 46, 3179.  doi: 10.1016/j.ejmech.2011.05.013

    13. [13]

      Sujatha, K.; Shanmugam, P.; Perumal, P. T.; Muralidharan, D.; Rajendran, M. Bioorg. Med. Chem. Lett. 2006, 16, 4893.  doi: 10.1016/j.bmcl.2006.06.059

    14. [14]

      Helal, C. J.; Kang, Z.; Hou, X.; Pandit, J.; Chappie, T. A.; Humphrey, J. M.; Marr, E. S.; Fennell, K. F.; Chenard, L. K.; Fox, C.; Schmidt, C. J.; Williams, R. D.; Chapin, D. S.; Siuciak, J.; Lebel, L.; Menniti, F.; Cianfrogna, J.; Fonseca, K. R.; Nelson, F. R.; O'Connor, R.; MacDougall, M.; McDowell, L.; Liras, S. J. Med. Chem. 2011, 54, 4536.  doi: 10.1021/jm2001508

    15. [15]

      Kim, I. Y.; Kim, S. H. KR 2016006050, 2016[Chem. Abstr. 2016, 164, 225869].

    16. [16]

      Lhassani, M.; Chavignon, O.; Chezal, J.-M.; Teulade, J.-C.; Chapat, J.-P.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E.; Gueiffier, A. Eur. J. Med. Chem. 1999, 34, 271.  doi: 10.1016/S0223-5234(99)80061-0

    17. [17]

      Alcarazo, M.; Roseblade, S. J.; Cowley, A. R.; Fernandez, R.; Brown, J. M.; Lassaletta, J. M. J. Am. Chem. Soc. 2005, 127, 3290.  doi: 10.1021/ja0423769

    18. [18]

      Mizushige, K.; Ueda, T.; Yukiiri, K.; Suzuki, H. Cardiovasc. Drug Rev. 2002, 20, 163.

    19. [19]

      Ankley, G. T.; Kahl, M. D.; Jensen, K. M.; Hornung, M. W.; Korte, J. J.; Makynen, E. A.; Leino, R. L. Toxicol. Sci. 2002, 67, 121.  doi: 10.1093/toxsci/67.1.121

    20. [20]

      Veber, D. F.; Johnson, S. R.; Cheng, H.-Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. J. Med. Chem. 2002, 45, 2615.  doi: 10.1021/jm020017n

    21. [21]

      Bai, D.; Lummis, S. C. R.; Leicht, W.; Breer, H.; Sattelle, D. B. Pestic. Sci. 1991, 33, 197.  doi: 10.1002/ps.v33:2

    22. [22]

      Feng, X.-G.; Liu, X.-W.; Han, Z.-L.; Guan, L.-T.; Xu, L.-Z. J. Qingdao Univ. Sci. Technol., Nat. Sci. Ed. 2012, 33, 381.

    23. [23]

      Li, J.; Huang, T.; Li, L.; Ding, T.; Zhu, H.; Yang, B.; Ye, Q.; Gan, J. J. Agric. Food Chem. 2016, 64, 8109.  doi: 10.1021/acs.jafc.6b03422

    24. [24]

      Tomizawa, M.; Casida, J. E. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 247.  doi: 10.1146/annurev.pharmtox.45.120403.095930

    25. [25]

      Bao, H.; Shao, X.; Zhang, Y.; Deng, Y.; Xu, X.; Liu, Z.; Li, Z. J. Agric. Food Chem. 2016, 64, 5148.  doi: 10.1021/acs.jafc.6b01512

    26. [26]

      Lu, S.; Zhuang, Y.; Wu, N.; Feng, Y.; Cheng, J.; Li, Z.; Chen, J.; Yuan, J.; Xu, X. J. Agric. Food Chem. 2013, 61, 10858.  doi: 10.1021/jf403272h

    27. [27]

      Shao, X.; Xu, Z.; Zhao, X.; Xu, X.; Tao, L.; Li, Z.; Qian, X. J. Agric. Food Chem. 2010, 58, 2690.  doi: 10.1021/jf902513t

    28. [28]

      (a) Huang, Z.; Wang, M. Heterocycles 1994, 37, 1233.
      (b) Kong, L.; Yang, R.; Du, X.; Yan, S.; Lin, J. Chin. J. Org. Chem. 2016, 36, 2437 (in Chinese).
      (孔令斌, 杨瑞霞, 杜璇璇, 严胜骄, 林军, 有机化学, 2016, 36, 2437.)
      (c) Peng, M.; Yang, R.; Liu, X.; Yan, S.; Lin, J. Chin. J. Org. Chem. 2015, 35, 1754 (in Chinese).
      (彭美阳, 杨瑞霞, 刘昔敏, 严胜骄, 林军, 有机化学, 2015, 35, 1754.)

    29. [29]

      (a) Chen, X.-B.; Liu, Z.-C.; Lin, X.-R.; Huang, R.; Yan, S.-J.; Lin, J. ACS Sustainable Chem. Eng. 2014, 2, 2391.
      (b) Luo, D.; Cui, S.; Hu, X.; Yan, S.; Lin, J. Chin. J. Org. Chem. 2017, 37, 166 (in Chinese).
      (罗大云, 崔时胜, 胡兴梅, 林军, 严胜骄, 有机化学, 2017, 37, 166.)

    30. [30]

      Yu, F.-C.; Huang, R.; Ni, H.; Fan, J.; Yan, S.-J.; Lin, J. Green Chem. 2013, 15, 453.  doi: 10.1039/C2GC36552A

    31. [31]

      Chen, X.-B.; Liu, Z.-C.; Yang, L.-F.; Yan, S.-J.; Lin, J. ACS Sustainable Chem. Eng. 2014, 2, 1155.  doi: 10.1021/sc500170d

    32. [32]

      Xiao, X.; Wang, X.; Gui, X.; Chen, L.; Huang, B. Chem. Biodiversity 2016, 11, 1427.

    33. [33]

      Mir, S. A. Int. J. PharmTech Res. 2016, 9, 70.

    34. [34]

      (a) Ding, Z.-W.; Tan, Q.-T.; Liu, B.-X.; Xu, K.; Xu, B. Acta Chim. Sinica 2015, 73, 1302 (in Chinese).
      (丁正伟, 谭启涛, 刘秉新, 张可, 许斌, 化学学报, 2015, 73, 1302.)
      (b) Zhao, J.-B.; Zhang, Q. Acta Chim. Sinica 2015, 73, 1235 (in Chinese).
      (赵金钵, 张前, 化学学报, 2015, 73, 1235.)

    35. [35]

      Alizadeh, A.; Bayat, F.; Zhu, Z. Res. Chem. Intermed. 2016, 42, 5927.  doi: 10.1007/s11164-015-2414-6

    36. [36]

      Yaqub, M.; Perveen, R.; Shafiq, Z.; Pervez, H.; Tahir, M. N. Synlett 2012, 23, 1755.  doi: 10.1055/s-00000083

    37. [37]

      Nishiwaki, H.; Nakagawa, Y.; Takeda, D. Y.; Okazawa, A.; Akamatsu, M.; Miyagawa, H.; Ueno, T.; Nishimura, K. Pest Manage. Sci. 2000, 56, 875.  doi: 10.1002/(ISSN)1526-4998

  • 加载中
    1. [1]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    2. [2]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    3. [3]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    4. [4]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    5. [5]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    6. [6]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    7. [7]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    8. [8]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    9. [9]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    10. [10]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    11. [11]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    16. [16]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    17. [17]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    18. [18]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    19. [19]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(9)
  • Abstract views(1600)
  • HTML views(178)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return