Citation: Cui Tao, Li Congxiang, Li Ming, Wen Lirong. Efficient Copper-Catalyzed Coupling Reaction for the Synthesis of Benzo[4, 5]imidazo[1, 2-b]pyrazoles[J]. Chinese Journal of Organic Chemistry, ;2017, 37(6): 1487-1493. doi: 10.6023/cjoc201612029 shu

Efficient Copper-Catalyzed Coupling Reaction for the Synthesis of Benzo[4, 5]imidazo[1, 2-b]pyrazoles

  • Corresponding author: Wen Lirong, wenlirong@qust.edu.cn
  • Received Date: 7 December 2016
    Revised Date: 20 January 2017

    Fund Project: the National Natural Science Foundation of China 21572110the Natural Science Foundation of Shandong Province ZR2014BM006the National Natural Science Foundation of China 21372137

Figures(4)

  • A fast and efficient CuI-catalyzed intramolecular C—N coupling reaction of N-(2-bromoaryl)-1H-pyrazol-5-amines to synthesize benzo[4, 5]imidazo[1, 2-b]pyrazoles has been developed from N-(2-bromoaryl)-thioacetanilides. A series of benzo[4, 5]imidazo[1, 2-b]pyrazoles were obtained in excellent yields with CuI/heterocyclic ketene aminals catalytic system in the presence of Cs2CO3 in dimethyl sulfoxide (DMSO) at 120 ℃ within 10 min. The reaction provides an fast and efficient protocol to access a series of benzo[4, 5]imidazo[1, 2-b]pyrazoles in good to high yields.
  • 加载中
    1. [1]

      Douglas, A. H.; Gregory, T. B.; Mark, L. S. Chem. Rev. 2003, 103, 893.  doi: 10.1021/cr020033s

    2. [2]

      (a) Sadowski, S.; Ruf, T.; Wirth, K.; Schreuder, H.; Buning, C. WO 2014053533, 2014[Chem. Abstr. 2014, 160, 567598].
      (b) Ruf, S.; Sadowski, T.; Horstick, G.; Schreuder, H.; Buning, C.; Olpp, T.; Wirth, K. WO 2012101199, 2012 [Chem. Abstr. 2012, 157, 295144].

    3. [3]

      Wardakhan, W. W. Phosphorus, Sulfur Silicon Relat. Elem. 2006, 181, 2051.  doi: 10.1080/10426500600605749

    4. [4]

      Van Gelder, J. M.; Basel, Y.; Kraiz, B. O.; Mouallem, O.; Miron, D.; Gur-Arie, N.; Klein, J. WO 2005074375, 2005 [Chem. Abstr. 2005, 143, 229556].

    5. [5]

    6. [6]

    7. [7]

      (a) Zheng, N.; Buchwald, S. L. Org. Lett. 2007, 9, 4749.
      (b) Brasche, G.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 1932.

    8. [8]

      (a) Zou, B.-L.; Yuan, Q.-L.; Ma, D.-W. Angew. Chem., Int. Ed. 2007, 46, 2598.
      (b) Zhu, S.-L.; Yu, S.-Y.; Ma, D.-W. Angew. Chem., Int. Ed. 2008, 47, 545.

    9. [9]

      Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954.  doi: 10.1002/anie.v48:38

    10. [10]

      Verma, A. K.; Kesharwani, T.; Singh, J.; Tandon, V.; Larock, R. C. Angew. Chem., Int. Ed. 2009, 48, 1138.  doi: 10.1002/anie.v48:6

    11. [11]

      (a) Rao, H.-H.; Fu, H.; Jiang, Y.-Y.; Zhao, Y.-F. Angew. Chem., Int. Ed. 2009, 48, 1114.
      (b) Wang, F.; Liu, H.-X.; Fu, H.; Jiang, Y.-Y.; Zhao, Y.-F. Org. Lett. 2009, 11, 2469.

    12. [12]

      (a) You, W.; Yan, X.-Y.; Liao, Q.; Xi, C.-J. Org. Lett. 2010, 12, 3930.
      (b) Liao, Q.; Zhang, L.-Y.; Li, S.-T.; Xi, C.-J. Org. Lett. 2010, 13, 228.

    13. [13]

      Liao, Q.; Wang, Y.-X.; Zhang, L.-Y.; Xi, C.-J. J. Org. Chem. 2009, 74, 6371.  doi: 10.1021/jo901105r

    14. [14]

      Chen, Y.; Wang, Y.-J.; Sun, Z.-M.; Ma, D.-W. Org. Lett. 2008, 10, 625.  doi: 10.1021/ol7029382

    15. [15]

      Yang, K.; Qiu, Y.-T.; Li, Z.; Wang, Z.-Y.; Jiang, S. J. Org. Chem. 2011, 76, 3151.  doi: 10.1021/jo1026035

    16. [16]

      Xie, Y.-X.; Pi, S.-F.; Wang, J.; Yin, D.-L.; Li, J.-H. J. Org. Chem. 2006, 71, 8324.  doi: 10.1021/jo061572q

    17. [17]

      Wang, D.-P.; Ding, K. Chem. Commun. 2009, 1891.

    18. [18]

      (a) Guo, W.-S.; Wen, L.-R.; Li, M. Org. Biomol. Chem. 2015, 13, 1942.
      (b) Kumar, S.; Ila, H.; Junjappa, H. J. Org. Chem. 2009, 74, 7046.
      (c) Zhao, Y.-L.; Zhang, W.; Wang, S.; Liu, Q. J. Org. Chem. 2007, 72, 4985.
      (d) Wen, L.-R.; Sun, J.-H.; Li, M.; Sun, E.-T.; Zhang, S.-S. J. Org. Chem. 2008, 73, 1852.

    19. [19]

      (a) Wang, K.-M.; Yan, S.-J.; Lin, J. Eur. J. Org. Chem. 2014, 1129.
      (b) Yu, F.-C.; Yan, S.-J.; Hu, L.; Wang, Y.-C.; Lin, J. Org. Lett. 2011, 13, 4782.
      (c) Wen, L.-R.; Li, Z.-R.; Li, M.; Cao, H. Green Chem. 2012, 14, 707.

    20. [20]

      Wen, L.-R.; Jin, X.-J.; Niu, X.-D.; Li, M. J. Org. Chem. 2015, 80, 90.  doi: 10.1021/jo5020323

    21. [21]

      Kumar, S.; Ila, H.; Junjappa, H. J. Org. Chem. 2009, 74, 7046.  doi: 10.1021/jo901309t

    22. [22]

      (a) Li, M.; Cao, H.; Wang, Y.; Lv, X.-L.; Wen, L.-R. Org. Lett. 2012, 14, 3470.
      (b) Wen, L.-R.; Men, L.-B.; He, T.; Ji, G.-J.; Li, M. Chem.-Eur. J. 2014, 20, 5028.
      (c) Wen, L.-R.; Man, N.-N.; Yuan, W.-K.; Li. M. J. Org. Chem. 2016, 81, 5942.
      (d) Li, M.; Kong, X.-J.; Wen, L.-R. J. Org. Chem. 2015, 80, 11999.
      (e) Wen, L.-R.; Yuan, W.-K.; Li, M. J. Org. Chem. 2015, 80, 4942.

    23. [23]

      Peruncheralathan, S.; Khan, T. A.; Ila, H.; Junjappa, H. J. Org. Chem. 2005, 70, 10030.  doi: 10.1021/jo051771u

    24. [24]

      Kuz'menko, T. A.; Divaeva, L. N.; Morkovnik, A. S. Russ. Chem. Bull. Int. Ed. 2011, 60, 548.  doi: 10.1007/s11172-011-0085-z

    25. [25]

      (a) Lou, Z.-B.; Zhang, S.; Chen, C.; Pang, X.-L.; Li, M.; Wen, L.-R. Adv. Synth. Catal. 2014, 356, 153.
      (b) Hoover, J. M.; Ryland, B. L.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 2357.
      (c) Wang, Y.; Chen, C.; Peng, J.; Li, M. Angew. Chem., Int. Ed. 2013, 52, 5323.
      (d) Zhu, S.-L.; Niljianskul, N.; Buchwald, S. L. J. Am. Chem. Soc. 2013, 135, 15746.
      (e) Yao, C.-S.; Wang, D.-L.; Lu, J.; Li, T.-J.; Jiao, W.-H.; Yu, C.-X. Chem.-Eur. J. 2012, 18, 1914.
      (f) Zeng, X.; Huang, W.-M.; Qiu, Y.-T.; Jiang, S. Org. Biomol. Chem. 2011, 9, 8224.

  • 加载中
    1. [1]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    2. [2]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    3. [3]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    4. [4]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    5. [5]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    6. [6]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    7. [7]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    8. [8]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    9. [9]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    10. [10]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    11. [11]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    12. [12]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    15. [15]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    16. [16]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    17. [17]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    18. [18]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    19. [19]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    20. [20]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

Metrics
  • PDF Downloads(7)
  • Abstract views(2073)
  • HTML views(782)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return