Citation: Li Xiang, Lin Qi, Qu Wenjuan, Li Qiao, Chen Xiaobin, Li Wenting, Zhang Youming, Yao Hong, Wei Taibao. A Novel Imidazophenazine Lactam Reaction Type Recognition Cyanide Ion Fluorescence Probe[J]. Chinese Journal of Organic Chemistry, ;2017, 37(4): 889-895. doi: 10.6023/cjoc201611008 shu

A Novel Imidazophenazine Lactam Reaction Type Recognition Cyanide Ion Fluorescence Probe

  • Corresponding author: Wei Taibao, weitaibao@126.com
  • Received Date: 3 November 2016
    Revised Date: 29 December 2016

    Fund Project: the National Natural Science Foundation of China 21661028the National Natural Science Foundation of China 21262032the National Natural Science Foundation of China 21574104the National Natural Science Foundation of China 21662031

Figures(11)

  • A novel imidazophenazine lactam fluorescence chemosensor (S1) was designed, synthesized and characterized by 1H NMR, 13C NMR and HRMS techniques. Fluorescence spectra of S1 in dimethyl sulfoxide (DMSO) solution were measured. Its maximum emission wavelength was 524 nm. The DMSO solution of S1 has bright yellow fluorescence. Respectively, to the S1 solution add F-, Cl-, Br-, I-, AcO-, H2PO4-, HSO4-, ClO4-, and SCN-, the fluorescent color of the solution didn't change. Only the CN- addition, the fluorescent color of the S1 solution changed from yellow to orange-red, indicating that S1 has good specific selectivity for CN-. The results of anti-disturbance experiment demonstrated that S1 detect CN- without interference from other anions. By calculation, the linear of the fluorescence of the sensor for CN- is 9.96×10-7. This value is lower than the World Health Organization (WHO) provisions of the cyanide content of drinking water. Mechanism studies show that S1 is a fluorescence sensor by reactive recognition CN-. In addition, the application of sensor S1 supported on solid silica gel was used as a solid material to detecting solid NaCN and CN- in pure water.
  • 加载中
    1. [1]

      Chen, J.-J.; Chen, W.; He, H.; Li, D.-B.; Li, W.-W.; Xiong, L.; Yu, H.-Q. Environ. Sci. Technol. 2013, 47, 1033.  doi: 10.1021/es304189t

    2. [2]

      Ahuja, E. G.; Janning, P.; Mentel, M.; Graebsch, A.; Breinbauer, R.; Hiller, W.; Costisella, B.; Thomashow, L. S.; Mavrodi, D. V.; Blankenfeldt, W. J. Am. Chem. Soc. 2008, 130, 17053.  doi: 10.1021/ja806325k

    3. [3]

      Yang, L.; Li, X.; Qu, Y.; Qu, W.-S.; Zhang, X.; Hang, Y.-D.; Agren, H.; Hua, J.-L. Sen. Actuators, B 2014, 203, 833.  doi: 10.1016/j.snb.2014.07.045

    4. [4]

      Gu, P.-Y.; Zhao, Y.-B.; He, J.-H.; Zhang, J.; Wang, C.-Y.; Xu, Q.-F.; Lu, J.-M.; Sun, X.-W.; Zhang, Q.-C. J. Org. Chem. 2015, 80, 3030.  doi: 10.1021/jo5027707

    5. [5]

      Chen, W.; Su, J.-H, ; Tian, H. Sci. China: Chem. 2016, 46, 325 (in Chinese).

    6. [6]

      Zhou, H.-T.; Sun, L.; Chen, W.; Tian, G.-J.; Chen, Y.; Li, Y.-R.; Su. J.-H. Tetrahedron 2016, 72, 2300.  doi: 10.1016/j.tet.2016.03.036

    7. [7]

      Metz, A. E.; Podlesny, E. E.; Carroll, P. J.; Klinghoffer, A. N.; Kozlowski, M. C. J. Am. Chem. Soc. 2014, 136, 10601.  doi: 10.1021/ja506137j

    8. [8]

      Aggarwal, K.; Khurana, J. M. J. Lumin. 2015, 167, 146.  doi: 10.1016/j.jlumin.2015.06.027

    9. [9]

      Wei, T.-B.; Wu, G.-Y.; Shi, B.-B.; Lin, -Q.; Yao, H.; Zhang, Y.-M. Chin. J. Chem. 2014, 32, 1238.  doi: 10.1002/cjoc.v32.12

    10. [10]

      Zhang, P.; Zhang, Y.-M.; Lin, Q.; Yao, H.; Wei, T.-B. Chin. J. Org. Chem. 2014, 34, 1300 (in Chinese).
       

    11. [11]

      Li, C.-W.; Yang, D.; Yin, B.; Guo, Y. Chin. J. Org. Chem. 2016, 36, 787 (in Chinese).
       

    12. [12]

      Gao, G.-B.; Gong, D.-J.; Zhang, M.-X.; Sun, T.-L. Acta. Chim. Sinica. 2016, 74, 363 (in Chinese).

    13. [13]

      Zhang, Y.-P.; You, C.-X.; Yang, Y.-S.; Liu, X.-Y.; Guo, H.-C.; Dong, Y.-Y. Chin. J. Org. Chem. 2016, 36, 1401 (in Chinese).
       

    14. [14]

      Su, N.; Yang, M.-P.; Meng, W.-P.; Yang, B.-Q. Chin. J. Org. Chem. 2015, 35, 175 (in Chinese).
       

    15. [15]

      Yu, H.-B.; Li, H.-L.; Zhang, X.-F.; Xiao, Y.; Fang, P.-J.; Lü, C.-J.; Hou, W. Acta Chim. Sinica 2015, 73, 450 (in Chinese).

    16. [16]

      Zang, L.-B.; Wei, D.-Y.; Wang, S.-C.; Jiang, S.-M. Tetrahedron 2012, 68, 636.  doi: 10.1016/j.tet.2011.10.105

    17. [17]

      Gupta, A. S.; Garg, A.; Paul, K.; Luxami, V. J. Lumin. 2016, 173, 165.  doi: 10.1016/j.jlumin.2016.01.009

    18. [18]

      Jo, J. Y.; Olasz, A.; Chen, C. H.; Lee, D. J. Am. Chem. Soc. 2013, 135, 3620.  doi: 10.1021/ja312313f

    19. [19]

      Yan, L.-R.; Yang, M.-P.; Leng, X.; Zhang, M.; Long, Y.; Yang, B.-Q. Tetrahedron 2016, 72, 4361.  doi: 10.1016/j.tet.2016.05.082

    20. [20]

      Yoo, M.; Park, S.; Kim, H. J. Sen. Actuators, B 2015, 220, 788.  doi: 10.1016/j.snb.2015.06.021

    21. [21]

      Kim, D.; Na, S.; Y.; Kim, H. J. Sen. Actuators, B 2016, 226, 227.  doi: 10.1016/j.snb.2015.11.122

    22. [22]

      Wang, S. T.; Chir, J. L.; Jhong, Y.; Wu, A. T. J. Lumin. 2015, 167, 413.  doi: 10.1016/j.jlumin.2015.06.046

    23. [23]

      Yang, L.; Li, X.; Yang, J.-B.; Qu, Y.; Hua, J.-L. ACS Appl. Mater. Interfaces 2013, 5, 1317.  doi: 10.1021/am303152w

    24. [24]

      Yang, L.; Zhang, X.; Qu, W.-S.; Hua, J.-L. Imaging Sci. Photochem. 2014, 32, 1 (in Chinese).

    25. [25]

      Wang, F.; Wang, L.; Chen, X. Q.; Yoon, J. Y. Chem. Soc. Rev. 2014, 43, 12.  doi: 10.1039/C3CS90101G

    26. [26]

      Dagiliene, M.; Martynaitis, V.; Krisiucniene, V.; Krikstolaityte, S.; Sackus, A. ChemistryOpen 2015, 4, 363.  doi: 10.1002/open.v4.3

    27. [27]

      Wang, K.-N.; Ma, L.; Liu, G.-Q.; Cao, D.-X.; Guan, R.-F.; Liu, Z.-Q. Dyes Pigm. 2016, 126, 104.  doi: 10.1016/j.dyepig.2015.11.019

    28. [28]

      Lee, K. S.; Kim, H. J.; Kim, G. H.; Shin, I.; Hong, J. I. Org. Lett. 2008, 10, 49.  doi: 10.1021/ol7025763

    29. [29]

      El-Shishtawy, R. M.; Al-Zahrani, F. A. M.; Al-amshany, Z. M.; Asiri, A. M. Sen. Actuators, B 2017, 240, 288.  doi: 10.1016/j.snb.2016.08.168

    30. [30]

      Meng, Q.-T. Ph.D. Dissertation, Dalian University of Technology, Dalian, 2011 (in Chinese).

    31. [31]

      Shi, B.-B.; Zhang, P.; Wei, T.-B.; Yao, H.; Lin, Q.; Liu, J.; Zhang, Y.-M. Tetrahedron 2013, 69, 7981.  doi: 10.1016/j.tet.2013.07.007

    32. [32]

      Shi, B.-B.; Zhang, Y.-M.; Wei, T.-B.; Lin, Q.; Yao, H.; Zhang, P.; You, X.-M. Sens. Actuators, B 2014, 190, 555.  doi: 10.1016/j.snb.2013.09.043

    33. [33]

      Lin, Q.; Zhu, X.; Chen, P.; Fu, Y. P.; Zhang, Y. M.; Wei, T. B. Acta Chim. Sinica 2013, 71, 1516 (in Chinese).  doi: 10.7503/cjcu20130108

    34. [34]

      Gao, G.-Y.; Qu, W.-J.; Shi, B.-B.; Lin, Q.; Yao, H.; Yang, W.-L.; Zhang, Y.-M.; Wei, T.-B. Spectrochim. Acta, Part A 2014, 121, 514.  doi: 10.1016/j.saa.2013.11.004

    35. [35]

      Gao, G.-Y.; Qu, W.-J.; Shi, B.-B.; Lin, Q.; Yao, H.; Zhang, Y.-M.; Chang, J.; Cai, Y.; Wei, T.-B. Sens. Actuators, B 2015, 213, 501.  doi: 10.1016/j.snb.2015.02.077

    36. [36]

      Hu, J.-Y.; Liu, R.; Zhu, X.-L.; Cai, X.; Zhu, H.-J. Chin. Chem. Lett. 2015, 26, 339.  doi: 10.1016/j.cclet.2014.10.028

    37. [37]

      Wei, T.-B.; Li, W.-T.; Li, Q.; Su, J.-X.; Qu, W.-J. Lin, Q.; Yao, H.; Zhang, Y.-M. Tetrahedron Lett. 2016, 57, 2767.  doi: 10.1016/j.tetlet.2016.05.028

    38. [38]

      Wei, T.-B.; Li, W.-T.; Li, Q.; Qu, W.-J.; Li, H.; Yan, G.-T.; Lin, Q.; Yao, H.; Zhang, Y.-M. RSC Adv. 2016, 6, 43832.  doi: 10.1039/C6RA06769G

    39. [39]

      Li, W.-T.; Wu, G.-Y.; Qu, W.-J.; Li, Q.; Lou, J.-C.; Lin, Q.; Yao, H.; Zhang, Y.-M.; Wei, T.-B. Sens. Actuators, B 2017, 239, 671.  doi: 10.1016/j.snb.2016.08.016

    40. [40]

      Zhang, Y.-M.; Wang, Y.-L.; Lin, Q.; Wang, D.-D.; Wei, T.-B. Chin. J. Org. Chem. 2009, 29, 575 (in Chinese).
       

    41. [41]

      Wei, T.-B.; Wang, J.; Luo, R.; Zhang, Y.-M. Chin. J. Org. Chem. 2007, 27, 1381 (in Chinese).
       

    42. [42]

      Zhao, J.; Li, J.; Gao, J.; Kjelleberg, S. L. A.; Loo, S. C. J.; Zhang, Q. J. Heterocycl. Chem. 2015, 52, 1699.  doi: 10.1002/jhet.v52.6

    43. [43]

      Sahoo, P. K.; Giri, C.; Haldar, T. S.; Puttreddy, R.; Rissanen, K.; Mal, P. Eur. J. Org. Chem. 2016, 1283.

    44. [44]

      Liu, X, X.; Weinert, Z. J.; Sharafi, M.; Liao, C. Y.; Li, J. N.; Schneebeli, S. T. Angew. Chem., Int. Ed. 2015, 54, 12772.  doi: 10.1002/anie.201506793

    45. [45]

      Miao, S. B.; Bangcuyo, C. G.; Smith, M. D.; Bunz, U. H. F. Angew Chem., Int. Ed. 2006, 118, 677.  doi: 10.1002/(ISSN)1521-3757

    46. [46]

      Wu, J.-S.; Rui, X.-H.; Long, G.-K.; Chen, W.-Q.; Yan, Q.-Y.; Zhang, Q.-C. Angew. Chem., Int. Ed. 2015, 54, 7354.  doi: 10.1002/anie.v54.25

    47. [47]

      Hu, J. W.; Zhang, G. H.; Shih, H. H.; Jiang, X. Q.; Suna, P. P.; Cheng, C. H. J. Organomet. Chem. 2008, 693, 2798.  doi: 10.1016/j.jorganchem.2008.05.030

    48. [48]

      Lucas, M.-D.; Wang, J.-F.; Nick, A.; Li, H.; Liu, T-B.; Pang, Y. J. Phys. Chem. B 2016, 120, 766.  doi: 10.1021/acs.jpcb.5b10909

    49. [49]

      Yang, J.-R.; Fang, H.-P.; Gao, Y. J. Phys. Chem. Lett. 2016, 7, 1788.  doi: 10.1021/acs.jpclett.6b00574

    50. [50]

      Zhou, H.-T.; Sun, L.; Chen, W.; Tian, G.-J.; Chen, Y.; Li, Y.-R.; Su, J.-H. Tetrahedron 2016, 72, 2300.  doi: 10.1016/j.tet.2016.03.036

    51. [51]

      Zhou, H.-T.; Mei, J.; Chen, Y.-A.; Chen, C.-L.; Chen, W.; Zhang, Z.-Y.; Su, J.-H.; Chou, P.-T.; Tian, H. Small 2016, 12, 6542.  doi: 10.1002/smll.v12.47

    52. [52]

      Yang, Y.-T.; Yin, C.-X.; Huo, F.-J.; Chao, J.-B.; Zhang, Y.-B.; Cheng, F.-Q. Sens. Actuators, B 2014, 193, 220.  doi: 10.1016/j.snb.2013.11.094

    53. [53]

      Li, Q.; Zhang, J.-H.; Cai, Y.; Qu, W.-J.; Gao, G.-Y.; Lin, Q.; Yao, H.; Zhang, Y.-M.; Wei, T.-B. Tetrahedron 2015, 71, 857.  doi: 10.1016/j.tet.2014.12.047

    54. [54]

      Shive, M.-S.-C.; Tanuja, B.; Bhaskar, G. Tetrahedron Lett. 2008, 49, 6646.  doi: 10.1016/j.tetlet.2008.09.033

    55. [55]

      Celso, R. N.; Leandro, G. N.; Vanderlei, G. M. Anal. Chem. 2015, 87, 362.  doi: 10.1021/ac504037v

    56. [56]

      Ji, H. K.; Seong, Y. L.; Hye, M. A.; Cheal, K. Sens. Actuators, B 2017, 242, 25.  doi: 10.1016/j.snb.2016.11.026

    57. [57]

      Duan, Y.-L.; Zheng, Y.-S. Talanta 2013, 107, 332.  doi: 10.1016/j.talanta.2013.01.048

    58. [58]

      Shi, B.-B. M.S. Thesis, Northwest Normal University, Lanzhou, 2014 (in Chinese).

  • 加载中
    1. [1]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    2. [2]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    3. [3]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    4. [4]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    5. [5]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    8. [8]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    9. [9]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    10. [10]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    11. [11]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    12. [12]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    13. [13]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    14. [14]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    16. [16]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    17. [17]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    18. [18]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    19. [19]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    20. [20]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

Metrics
  • PDF Downloads(7)
  • Abstract views(2651)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return