Citation: Xin Hanshen, Ge Congwu, Fu Lina, Yang Xiaodi, Gao Xike. Naphthalene Diimides Endcapped with Ethynylazulene: Molecular Design, Synthesis and Properties[J]. Chinese Journal of Organic Chemistry, ;2017, 37(3): 711-719. doi: 10.6023/cjoc201609029 shu

Naphthalene Diimides Endcapped with Ethynylazulene: Molecular Design, Synthesis and Properties

  • Corresponding author: Gao Xike, gaoxk@mail.sioc.ac.cn
  • Received Date: 27 September 2016
    Revised Date: 25 October 2016

    Fund Project: the Shanghai Science and Technology Committee 16JC1400603the National Natural Science Foundation of China 21522209the " Strategic Priority Research Program" XDB12010100

Figures(7)

  • Azulene is noteworthy for its deep blue color with a large dipole moment. Compared to other unsaturated aromatic hydrocarbons, azulenes show unique photophysical and electrical properties. Herein, two isomers of 1, 4, 5, 8-naphthalene diimide (NDI) endcapped with ethynylazulene units (1 and 2) are presented, which are capped with five-membered and seven-membered rings of azulene moieties, respectively. It is interesting that these two compounds show remarkably different physicochemical properties, thermal stabilities and organic field-effect transistors (OFET) performance resulting from the different connections of an electron-rich five-membered ring and an electron-poor seven-membered ring. Density functional theory (DFT) calculations reveal that the lowest unoccupied molecular orbital (LUMO) energy of 2 (endcapped with 6-ethynylalzulene) is lower than that of 1 (endcapped with 2-ethynylalzulene), and 2 makes the electrons of LUMO more delocalized, which favor the overlap of LUMO between molecules, thus to obtain higher mobility for 2. OFETs based on thin films of these two isomers were fabricated with conventional spin-coated techniques. Under nitrogen atmosphere, 1 and 2 show n-type semiconducting properties with electron mobilities of up to 0.022 and 0.16 cm2·V-1·s-1, respectively, which is consistent with the DFT results.
  • 加载中
    1. [1]

      Lemal, D. M.; Goldman, G. D. J. Chem. Educ. 1988, 65, 923.  doi: 10.1021/ed065p923

    2. [2]

      Michl, J.; Thulstrup, E. W. Tetrahedron 1976, 32, 205.  doi: 10.1016/0040-4020(76)87002-0

    3. [3]

    4. [4]

      Dong, J. X.; Zhang, H. L. Chin. Chem. Lett. 2016, 27, 1097.  doi: 10.1016/j.cclet.2016.05.005

    5. [5]

      Ito, S.; Inabe, H.; Morita, N.; Ohta, K.; Kitamura, T.; Imafuku, K. J. Am. Chem. Soc. 2003, 125, 1669.  doi: 10.1021/ja0209262

    6. [6]

      (a) Salman, H.; Abraham, Y.; Tal, S.; Meltzman, S.; Kapon, M.; Tessler, N.; Speiser, S.; Eichen, Y. Eur. J. Org. Chem. 2005, 2207.
      (b) Zielinski, T.; Kedziorek, M. J.; Jurczak, J. Chem.-Eur. J. 2008, 14, 838.

    7. [7]

      (a) Wang, X.; Ng, J. K.-P.; Jia, P.; Lin, T.; Cho, C. M.; Xu, J.; Lu, X.; He, C. Macromolecules 2009, 42, 5534.
      (b) Amir, E.; Amir, R. J.; Campos, L. M.; Hawker, C. J. J. Am. Chem. Soc. 2011, 133, 10046.
      (c) Koch, M.; Blacque, O.; Venkatesan, K. Org. Lett. 2012, 14, 1580.
      (d) Murai, M.; Amir, E.; Amir, R. J.; Hawker, C. J. Chem. Sci. 2012, 3, 2721.
      (e) Ghazvini Zadeh, E. H.; Tang, S.; Woodward, A. W.; Liu, T.; Bondar, M. V.; Belfield, K. D. J. Mater. Chem. C 2015, 3, 8495.
      (f) Murai, M.; Takami, K.; Takeshima, H.; Takai, K. Org. Lett. 2015, 17, 1798.

    8. [8]

      (a) Wang, F. K.; Lai, Y. H.; Kocherginsky, N. M.; Kosteski, Y. Y. Org. Lett. 2003, 5, 995.
      (b) Wang, F. K.; Lai, Y. H.; Han, M. Y. Macromolecules 2004, 37, 3222.

    9. [9]

      Cristian, L.; Sasaki, I.; Lacroix, P. G.; Donnadieu, B.; Asselberghs, I.; Clays, K.; Razus, A. C. Chem. Mater. 2004, 16, 3543.  doi: 10.1021/cm0492989

    10. [10]

      (a) Kurotobi, K.; Kim, K. S.; Noh, S. B.; Kim, D.; Osuka, A. Angew. Chem., Int. Ed. 2006, 45, 3944.
      (b) Wang, F. K.; Lin, T. T.; He, C. B.; Chi, H.; Tang, T.; Lai, Y. H. J. Mater. Chem. 2012, 22, 10448.
      (c) Ince, M.; Bartelmess, J.; Kiessling, D.; Dirian, K.; Martinez-Diaz, M. V.; Torres, T.; Guldi, D. M. Chem. Sci. 2012, 3, 1472.

    11. [11]

      (a) Yamaguchi, Y.; Maruya, Y.; Katagiri, H.; Nakayama, K.; Ohba, Y. Org. Lett. 2012, 14, 2316.
      (b) Yamaguchi, Y.; Ogawa, K.; Nakayama, K.; Ohba, Y.; Katagiri, H. J. Am. Chem. Soc. 2013, 135, 19095.
      (c) Yao, J. J.; Cai, Z. X.; Liu, Z. T.; Yu, C. M.; Luo, H. W.; Yang, Y.; Yang, S. F.; Zhang, G. X.; Zhang, D. Q. Macromolecules 2015, 48, 2039.

    12. [12]

      Puodziukynaite, E.; Wang, H. W.; Lawrence, J.; Wise, A. J.; Russell, T. P.; Barnes, M. D.; Emrick, T. J. Am. Chem. Soc. 2014, 136, 11043.  doi: 10.1021/ja504670k

    13. [13]

      Nishimura, H.; Ishida, N.; Shimazaki, A.; Wakamiya, A.; Saeki, A.; Scott, L. T.; Murata, Y. J. Am. Chem. Soc. 2015, 137, 15656.  doi: 10.1021/jacs.5b11008

    14. [14]

      Xin, H. S.; Ge, C. W.; Yang, X. D.; Gao, H. L.; Yang, X. C.; Gao, X. K. Chem. Sci. 2016, 7, 6701.  doi: 10.1039/C6SC02504H

    15. [15]

      (a) Lokey, R. S.; Iverson, B. L. Nature 1995, 375, 303.
      (b) Zych, A. J.; Iverson, B. L. J. Am. Chem., Soc. 2000, 122, 8898.
      (c) Pantoş, G. D.; Pengo, P.; Sanders, J. K. M. Angew. Chem. Int. Ed. 2007, 46, 194.

    16. [16]

      (a) Redmore, N. P.; Rubtsov, I. V.; Therien, M. J. J. Am. Chem. Soc. 2003, 125, 8769.
      (b) Kelley, R. F.; Tauber, M. J.; Wasielewski, M. R. J. Am. Chem. Soc. 2006, 128, 4779.
      (c) Reczek, J. J.; Villazor, K. R.; Lynch, V.; Swager, T. M.; Iverson, B. L. J. Am. Chem. Soc. 2006, 128, 7995.

    17. [17]

      (a) Takenaka, S.; Yamashita, K.; Takagi, M.; Uto, Y.; Kondo, H. Anal. Chem. 2000, 72, 1334.
      (b) Rogers, J. E.; Weiss, S. J.; Kelly, L. A. J. Am. Chem. Soc. 2000, 122, 427.
      (c) Abraham, B.; McMasters, S.; Mullan, M. A.; Kelly, L. A. J. Am. Chem. Soc. 2004, 126, 4293.

    18. [18]

      Miller, L. L.; Mann, K. R. Acc. Chem. Res. 1996, 29, 417.  doi: 10.1021/ar9600446

    19. [19]

      (a) Katz, H. E.; Lovinger, A. J.; Johnson, J.; Kloc, C.; Siegrist, T.; Li, W.; Lin, Y.-Y.; Dodabalapur, A. Nature 2000, 404, 478.
      (b) Würthner, F. Angew. Chem., Int. Ed. 2001, 40, 1037.
      (c) Jones, B. A.; Facchetti, A.; Wasielewski, M. R.; Marks, T. J. J. Am. Chem. Soc. 2007, 129, 15259.

    20. [20]

      (a) Gao, X. K.; Di, C. A.; Hu, Y. B.; Yang, X. D.; Fan, H. Y.; Zhang, F.; Liu, Y. Q.; Li, H. X.; Zhu, D. B. J. Am. Chem. Soc. 2010, 132, 3697.
      (b) Hu, Y. B.; Gao, X. K.; Di, C. A.; Yang, X. D.; Zhang, F.; Liu, Y. Q.; Li, H. X.; Zhu, D. B. Chem. Mater. 2011, 23, 1204.
      (c) Zhang, F.; Hu, Y.; Schuettfort, T.; Di, C. A.; Gao, X.; McNeill, C. R.; Thomsen, L. S.; Mannsfeld, C.; Yuan, W.; Sirringhaus, H.; Zhu, D. B. J. Am. Chem. Soc. 2013, 135, 2338.
      (d) Hu, Y. B.; Wang, Z. L.; Zhang, X.; Yang, X. D.; Li, H. X.; Gao, X. K. Chin. J. Chem. 2013, 31, 1428.

    21. [21]

      Chang, J.; Ye, Q.; Huang, K.; Zhang, J. Chen, Z.; Wu, J.; Chi, C. Org. Lett. 2012, 14, 2964.  doi: 10.1021/ol300914k

    22. [22]

      Li, Y. H.; Zhang, G. X.; Zhang, W.; Wang, J. G.; Chen, X.; Liu, Z. T.; Yan, Y. L.; Zhao, Y. S.; Zhang, D. Q. Chem. Asian J. 2014, 9, 3207.  doi: 10.1002/asia.201402768

    23. [23]

      (a) Zhang, J.; Petoud, S.Chem. Eur. J.2008, 14, 1264.
      (b) Nozoe, T.; Takase, K.; Shimazaki, N. Bull. Chem. Soc. Jpn.1964, 37, 1644.
      (c) Takase, K.; Asao, T.; Takagi, Y.; Nozoe, T. Chem. Commun. (London)1968, 368b.
      (d) McDonald, R. N.; Richmond, J. M.; Curtis, J. R.; Petty, H. E.; Hoskins, T. L. J. Org. Chem. 1976, 41, 1811.
      (e) Koch, M.; Blacque, O.; Venkatesan, K. Org. Lett. 2012, 14, 1580.
      (f) Nozoe, T.; Seto, S.; Matsumura, S.; Murase, Y. Bull. Chem. Soc. Jpn.1962, 35, 1179.
      (g) Ito, S.; Inabe, H.; Okujima, T.; Morita, N.; Watanabe, M.; Harada, N.; Imafuku, K. J. Org. Chem.2001, 66, 7090.

    24. [24]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H. Vreven, T.; Montgomery, J. A.; Jr., Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02, Gaussian, Inc, Wallingford CT, 2009.

    25. [25]

      Mishra, A.; Behera, R. K.; Behera, P. K.; Mishra, B. K.; Behera, G. B. Chem. Rev. 2000, 100, 1973.  doi: 10.1021/cr990402t

  • 加载中
    1. [1]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    2. [2]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    3. [3]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    4. [4]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    5. [5]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    6. [6]

      Jianquan Liu Xiangshan Wang . Teaching Design and Practice of Naming Rules for Circular Isomer Configuration under the Guidance of Information Literacy. University Chemistry, 2025, 40(7): 352-358. doi: 10.12461/PKU.DXHX202409082

    7. [7]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    8. [8]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    9. [9]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    10. [10]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    11. [11]

      Kexin Feng Jie Zhang Yujia Sun Qiong Ai Longchun Li . 乙酰二茂铁和二茂铁甲酰丙酮的合成、纯化及表征. University Chemistry, 2025, 40(8): 307-314. doi: 10.12461/PKU.DXHX202409045

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    14. [14]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    15. [15]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    16. [16]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    17. [17]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    18. [18]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    19. [19]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    20. [20]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

Metrics
  • PDF Downloads(8)
  • Abstract views(1667)
  • HTML views(182)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return