Citation: Zhang Xiaopeng, Jing Huanzhi, Peng Weiyu, Li Yafang, Fan Xuesen, Zhang Guisheng. Selenium-Catalyzed Carbonylation to Phenylcarbamates and Methylene Diphenyl Dicarbamates[J]. Chinese Journal of Organic Chemistry, ;2017, 37(2): 411-417. doi: 10.6023/cjoc201609013 shu

Selenium-Catalyzed Carbonylation to Phenylcarbamates and Methylene Diphenyl Dicarbamates

  • Corresponding author: Zhang Xiaopeng, zhangxiaopengv@sina.com Zhang Guisheng, zgs@htu.cn
  • Received Date: 12 September 2016
    Revised Date: 12 October 2016

    Fund Project: the Program for Innovative Research Team in Science and Technology in University of Henan Province 15IRTSTHN003the Young Backbone Teachers Training Fund of Education Department of Henan Province 2013GGJS-059the Young Backbone Teachers Training Fund of Henan Normal University 2011-8

Figures(2)

  • A clean, economical and efficient approach to phenylcarbamates and methylene diphenyl dicarbamates was reported. With cheap and easily available nonmetal selenium as the catalyst, carbon monoxide instead of virulent phosgene as the carbonylation reagent, oxygen as the oxidant, the selenium-catalyzed oxidative carbonylation reaction of aniline could proceed smoothly with alcohols to afford phenylcarbamates mostly in moderate to good yields. Then, catalyzed by HCl/ZnCl2, the condensation of formaldehyde with the generated phenylcarbamates gave methylene diphenyl dicarbamates in moderate to good yields. The applicability of the substrates was good. Catalyst selenium could be easily recovered due to its function of phase-transfer catalysis and could be recycled. High atomic economy, low cost, no emission of corrosive waste, and phosgene-free condition make this approach very promising. The possible reaction mechanisms were also proposed.
  • 加载中
    1. [1]

    2. [2]

      (a) Tafesh, A. M.; Weiguny, J. Chem. Rev. 1996, 96, 2035.
      (b) Paul, P. Coord. Chem. Rev. 2000, 203, 269.
      (c) Baba, T.; Kobayashi, A.; Kawanami, Y.; Inazu, K.; Ishikawa, A.; Echizenn, T.; Murai, K.; Aso, S.; Inomata, M. Green Chem. 2005, 7, 159.
      (d) Shi, F.; Deng, Y. Q.; Sima, T. L.; Yang, H. Z. J. Catal. 2001, 203, 525.

    3. [3]

      (a) White, J. D.; Blakemore, P. R.; Milicevic, S. Org. Lett. 2002, 4, 1803.
      (b) Feroci, M.; Casadei, M. A.; Orsini, M.; Palombi, L.; Ines, A. J. Org. Chem. 2003, 68, 1548.
      (c) Deleon, R. G.; Kobayashi, A.; Yamauchi, T.; Ooishi, J.; Baba, T.; Sasaki, M.; Hiarata, F. Appl. Catal., A 2002, 225, 43.

    4. [4]

      (a) Crosby, D. G.; Niemann, C. J. Am. Chem. Soc. 1954, 76, 4458.
      (b) Zhang, A.; Kuwahara, Y.; Hotta, Y.; Tsuda, A. Asian J. Org. Chem. 2013, 2, 572.

    5. [5]

      (a) Uhlig, N.; Li, C. J. Chem.-Eur. J. 2014, 20, 12066.
      (b) Seth, K.; Nautiyal, M.; Purohit, P.; Parikh, N.; Chakraborti, A. K. Chem. Commun. 2015, 51, 191.
      (c) Izawa, Y.; Ishiguro, K.; Tomioka, H. Bull. Chem. Soc. Jpn. 1983, 56, 951.
      (d) Padiya, K. J.; Gavade, S.; Kardile, B.; Tiwari, M.; Bajare, S.; Mane, M.; Gaware, V.; Varghese, S.; Harel, D.; Kurhade, S. Org. Lett., 2012, 14, 2814.
      (e) Kang, W. K.; Wang, G. Y.; Yao, J. Chem. Res. Chin. Univ. 2006, 22, 669.

    6. [6]

      Ragaini, F.; Gasperini, M.; Cenini, S. Adv. Synth. Catal. 2004, 346, 63.

    7. [7]

      Yang, Y.; Lu, S. W. Chin. J. Catal. 1999, 20, 224 (in Chinese).

    8. [8]

    9. [9]

      Stock, C.; Brueckner, R. Adv. Synth. Catal. 2012, 354, 2309.  doi: 10.1002/adsc.v354.11/12

    10. [10]

      (a) Pei, Y. X.; Li, H. Q.; Liu, H. T.; Zhang, Q. H.; Zhang, Y. Chem. Res. Chin. Univ. 2010, 26, 550.
      (b) Kim, S. D.; Lee, K. H. J. Mol. Catal. 1993, 78, 237.

    11. [11]

    12. [12]

      Zhang, X. P.; Li, D. S.; Ma, X. J.; Wang, Y.; Zhang, G. S. Synthesis 2013, 45, 1357.  doi: 10.1055/s-00000084

    13. [13]

      Kang, L. J.; Zhao, X. Q.; An, H. L.; Wan, Y. J. Acta Pet. Sin. 2013, 29, 249 (in Chinese).
       

    14. [14]

      Kianmehr, E.; Baghersad, M. H. Adv. Synth. Catal. 2011, 353, 2599.  doi: 10.1002/adsc.v353.14/15

    15. [15]

      George, D. K.; Moore, D. H.; Brian, W. P.; Garman, J. A. J. Agric. Food Chem. 1954, 2, 356.  doi: 10.1021/jf60027a003

    16. [16]

      Whitmore, F. C.; Popkin, A. H.; Whitaker, J. S.; Mattil, K. F.; Zech, J. D. J. Am. Chem. Soc. 1938, 60, 2462.  doi: 10.1021/ja01277a048

    17. [17]

      Schicktanz, S. T.; Etienne, A. D.; Steele, W. I. Ind. Eng. Chem. Anal. Ed. 1939, 11, 420.  doi: 10.1021/ac50136a003

    18. [18]

      Bayer, F. GB 775723, 1957 [Chem. Abstr. 1957, 51, 90827].

    19. [19]

      Brockway, C. E. US 2806051, 1957 [Chem. Abstr. 1957, 52, 15931].

    20. [20]

      Murphy, W. S.; Raman, K. P. J. Chem. Soc., Perkin Trans. 1 1981, 447.

    21. [21]

      Matthews, K. H.; Mclennaghan, A.; Pethrick, R. A. Brit. Polym. J. 1987, 19, 165.  doi: 10.1002/pi.v19.2

    22. [22]

      Tereshatov, V. V.; Senichev, V. Y. J. Appl. Polym. Sci. 2015, 41481.
       

    23. [23]

      Chapman, T. M. J. Appl. Polym. Sci. Part A: Polym. Chem. 1989, 27, 1993.
       

    24. [24]

      Lu, Q. W.; Hoye, T. R.; Macosko, C. W. Thermoplastic Polyurethane Blends 2002, 2310.
       

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    3. [3]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    4. [4]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    5. [5]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    6. [6]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    7. [7]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    8. [8]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    9. [9]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    10. [10]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    11. [11]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    12. [12]

      Ying Liu Jia Ji Yinling Hou Lilan Guo Xuan Lv . Selenium’s Journey. University Chemistry, 2025, 40(7): 218-224. doi: 10.12461/PKU.DXHX202409046

    13. [13]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    16. [16]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    17. [17]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    18. [18]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    19. [19]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    20. [20]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

Metrics
  • PDF Downloads(2)
  • Abstract views(1194)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return