Efficient Synthesis of Epilactose
- Corresponding author: Jin Shuhui, shuhuij@cau.edu.cn Zhang Jianjun, zhangjianjun@cau.edu.cn
Citation:
Wang Jiayao, Jiang Rui, Liang Xiaomei, Jin Shuhui, Wang Daoquan, Zhang Jianjun. Efficient Synthesis of Epilactose[J]. Chinese Journal of Organic Chemistry,
;2017, 37(2): 375-384.
doi:
10.6023/cjoc201608010
Olano, A.; Calvo, M. M. Food Chem. 1989, 34, 239.
doi: 10.1016/0308-8146(89)90101-5
Watanabe, J.; Nishimukai, M.; Taguchi, H.; Senoura, T.; Hamada, S.; Matsui, H.; Yamamoto, T.; Wasaki, J.; Hara, H.; Ito, S. J. Dairy Sci. 2008, 91, 4518.
doi: 10.3168/jds.2008-1367
Nishimukai, M.; Watanabe, J.; Taguchi, H.; Senoura, T.; Hamada, S.; Matsui, H.; Yamamoto, T.; Wasaki, J.; Hara, H.; Ito, S. J Agric. Food Chem. 2008, 56, 10340.
doi: 10.1021/jf801556m
Suzuki, T.; Nishimukai, M.; Shinoki, A.; Taguchi, H.; Fukiya, S.; Yokota, A.; Saburi, W.; Yamamoto, T.; Hara, H.; Matsui, H. J. Agric. Food Chem. 2010, 58, 10787.
doi: 10.1021/jf102563y
Murakami, Y.; Ojima-Kato, T.; Saburi, W.; Mori, H.; Matsui, H.; Tanabe, S.; Suzuki, T. Br. J. Nutr. 2015, 114(11), 1774.
Bergmann, M.; Justus, L. Ann. Chem. 1923, 434, 79.
doi: 10.1002/(ISSN)1099-0690
Haskins, W. T.; Hann, R. M.; Hudson, C. S. J. Am. Chem. Soc. 1942, 64, 1852.
doi: 10.1021/ja01260a031
Huang, S.; Yu, H.; Chen, X. Angew. Chem., Int. Ed. 2007, 46, 2249.
doi: 10.1002/(ISSN)1521-3773
Ito, S.; Taguchi, H.; Hamada, S.; Kawauchi, S.; Ito, H.; Senoura, T.; Watanabe, J.; Nishimukai, M.; Matsui, H. Appl. Microbiol. Biotechnol. 2008, 79, 433.
doi: 10.1007/s00253-008-1449-7
Tyler, T. R.; Leatherwood, J. M. Arch. Biochem. Biophys. 1967, 119, 363.
doi: 10.1016/0003-9861(67)90466-3
Zong, G. H.; Liang, X. M.; Zhang, J. J.; Duan, L. S.; Tan, W. M.; Wang, D. Q. Carbohydr. Res. 2014, 388, 87.
doi: 10.1016/j.carres.2013.12.006
Jiang, R.; Liang, X. M.; Jin, S. H.; Zhang, J. J.; Wang, D. Q. Chin. J. Org. Chem. 2014, 34, 926 (in Chinese).
doi: 10.6023/cjoc201312028
Jiang, R.; Zong, G. H.; Liang, X. M.; Jin, S. H.; Dong, Y. H.; Wang, D. Q.; Zhang, J. J. Synthesis 2015, 47, A~J.
Jiang, R.; Zong, G. H.; Liang, X. M.; Jin, S. H.; Zhang, J. J.; Wang, D. Q. Molecules 2014, 19, 6683.
doi: 10.3390/molecules19056683
Zong, G. H.; Yu, N. L.; Xu, Y. J.; Zhang, J. J.; Wang, D. Q.; Liang, X. M. Synthesis 2010, 10, 1666.
Chung, S.-K.; Moon, S.-H. Carbohydr. Res. 1994, 260, 39.
doi: 10.1016/0008-6215(94)80020-0
Richard, R.; Schmidt; Josef, Michell. Angew. Chem., Int. Ed. Engl. 1980, 19, 731.
doi: 10.1002/(ISSN)1521-3773
Blattner; Regine. Carbohydr. Res. 2006, 341(3), 299.
doi: 10.1016/j.carres.2005.11.027
Rio, S.; Beau, J. M.; Jacquinet, J. C. Carbohydr. Res. 1991, 219, 71.
doi: 10.1016/0008-6215(91)89043-F
Mariko, M.; Katsumi, A. Biosci. Biotechnol. Biochem. 2004, 68(10), 2086.
doi: 10.1271/bbb.68.2086
Yde, M.; De Bruyne, C. K. Carbohydr. Res. 1973, 26(1), 227.
doi: 10.1016/S0008-6215(00)85042-9
Mao, R. Z.; Guo, F.; Xiong, D. C.; Li, Q.; Duan, J.Y.; Ye, X.S. Org. Lett. 2015, 17(22), 5606.
doi: 10.1021/acs.orglett.5b02823
Corcilius, L.; Payne, R. J. Org. Lett. 2013, 15(22), 5794.
doi: 10.1021/ol402845e
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
Yukun Xing , Xiaoyu Xie , Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006
Yuexi Guo , Zhaoyang Li , Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067
Li Li , Xue Ke , Shan Wang , Zhuo Jiang , Yuzheng Guo , Chunguang Kuai . Antioxidative strategies of 2D MXenes in aqueous energy storage system. Chinese Chemical Letters, 2025, 36(5): 110423-. doi: 10.1016/j.cclet.2024.110423
Kaili Wang , Pengcheng Liu , Mingzhe Wang , Tianran Wei , Jitao Lu , Xingling Zhao , Zaiyong Jiang , Zhimin Yuan , Xijun Liu , Jia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532
Xuejian Xing , Pan Zhu , E Pang , Shaojing Zhao , Yu Tang , Zheyu Hu , Quchang Ouyang , Minhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452
Yuan Teng , Zichun Zhou , Jinghua Chen , Siying Huang , Hongyan Chen , Daibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
Qingying Gao , Tao Luo , Jianyuan Su , Chaofan Yu , Jiazhu Li , Bingfei Yan , Wenzuo Li , Zhen Zhang , Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
Hongyan Chen , Yajun Hou , Shui Hu , Zhuoxun Wei , Fang Zhu , Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109
Cunming Yu , Dongliang Tian , Jing Chen , Qinglin Yang , Kesong Liu , Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008
Jiaojiao Yu , Bo Sun , Na Li , Cong Wen , Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
Kun Zhang , Ni Dan , Dan-Dan Ren , Ruo-Yu Zhang , Xiaoyan Lu , Ya-Pan Wu , Li-Lei Zhang , Hong-Ru Fu , Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
Reagents and conditions: (a) (1) 7.5 equiv. Ac2O, 0.08 equiv. HClO4; (2) 1.5 equiv. BnOH, 5.3 equiv. BF3•Et2O; (3) NaOH, pH=7; 83% for the three steps; (b) (1) 0.5 equiv. p-TsOH, 1.05 equiv. 2-Methoxypropene, DMF; (2) 70 ℃; 92% for the two steps; (c) 1.05 equiv. AcCl, 3 equiv. Py, CH2Cl2, 0 ℃, 5b, 83%; (d) 1.05 equiv. BzCl, 3 equiv. Py, CH2Cl2, 0 ℃, 5c, 80%; (e) 0.02 equiv. p-TsOH, 1.05 equiv. 2-Methoxypropene, DMF, 90%; (f) 3 equiv. Ac2O, Py, 98%; (g) 1.05 equiv. BzCl, 3 equiv. Py, 96%; (h) 70% AcOH, 70 ℃, 99%; (i) 1.05 equiv. AcCl, 3 equiv. Py, CH2Cl2, 0 ℃; 94% for the 8b; 74% for the 8c
Reagents and conditions: (a) (1) 7.5 equiv. Ac2O, 0.08 equiv. HClO4; (2)1.5 equiv. p-Toluenethiol, 5 equiv. BF•Et2O, CH2Cl2; 72% for the two steps; (b) (1) 10, CH3ONa, CH3OH, pH=10; (2) 6 equiv. BzCl, 18 equiv. Py; 93% for the two steps; (c) (1) 7.5 equiv. Ac2O, 0.08 equiv. HClO4; (2) 2 equiv. Benzylamine, THF; (3) 1.5 equiv. CCl3CN, 3 equiv. K2CO3; 84% for the three steps; (d) (1) 7.5 equiv. BzCl, Py; (2) MeOH-NH3, CH3OH, THF; (3) 1.5 equiv. CCl3CN, 3 equiv. K2CO3; 80% for the three steps
Reagents and conditions: (a) (1) 7.5 equiv. Ac2O, 0.08 equiv. HClO4; (2) 1.5 equiv. BnOH, 5 equiv. BF3・Et2O; (3) NaOH, pH=7; 83% for the three steps; (b) (1) 0.5 equiv. p-TsOH, 1.05 equiv. 2-Methoxypropene, DMF; (2) 70 ℃; (3) 1.05 equiv. AcCl, 3 equiv. Py, CH2Cl2, 0 ℃; 76% for the three steps; (c) (1) 7.5 equiv. BzCl, Py; (2) MeOH-NH3, CH3OH, THF; (3) 1.5 equiv. CCl3CN, 3 equiv. K2CO3; 80% for the three steps; (d) 0.01 equiv. TMSOTF, CH2Cl2, 0 ℃, 88%; (e) (1) 70% AcOH, 70 ℃; (2) H2, 0.05 equiv. Pb/C; (3) MeONa, MeOH, pH=9; 90% for the three steps