Citation: Wang Hui, Zheng Yi, Pan Zhentao, Fu Hongliang, Ling Fei, Zhong Weihui. Progress of Frustrated Lewis Pairs in Catalytic Hydrogenation[J]. Chinese Journal of Organic Chemistry, ;2017, 37(2): 301-313. doi: 10.6023/cjoc201607046 shu

Progress of Frustrated Lewis Pairs in Catalytic Hydrogenation

  • Corresponding author: Zhong Weihui, weihuizhong@zjut.edu.cn
  • Received Date: 30 July 2016
    Revised Date: 19 September 2016

    Fund Project: the National Natural Science Foundation of China 21276238the National Natural Science Foundation of China 21676253

Figures(26)

  • Frustrated Lewis pairs (FLPs) catalyzed hydrogenation reaction is one of the hotspots in the current hydrogenation field. This kind of reaction has the advantages of environment friendly, no metal residue, etc., and has a potential prospect for industrial application. According to the category of the substrate, a brief review of the recent progress in the field of the FLPs-catalyzed hydrogenation as well as the asymmetric hydrogenation is depicted.
  • 加载中
    1. [1]

      Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124.  doi: 10.1126/science.1134230

    2. [2]

      Spies, P.; Erker, G.; Kehr, G.; Bergander, K.; Fröhlich, R.; Grimme, S.; Stephan, D.W. Chem. Commun. 2007, 5072.
       

    3. [3]

      Sumerin, V.; Schulz, F.; Nieger, M.; Leskelä, M.; Repo, T.; Rieger, B. Angew. Chem. Int. Ed. 2008, 47, 6001.  doi: 10.1002/anie.200800935

    4. [4]

      Holschumacher, D.; Bannenberg, T.; Hrib, C. G.; Jones, P. G.; Tamm, M. Angew. Chem. Int. Ed. 2008, 47, 7428.  doi: 10.1002/anie.v47:39

    5. [5]

      Lu, Z.-P.; Cheng, Z.-H.; Chen, Z.-X.; Weng, L.-H.; Li, Z.-H.; Wang, H.-D. Angew. Chem., Int. Ed. 2011, 50, 12227.  doi: 10.1002/anie.v50.51

    6. [6]

      Zaher, H.; Ashley, A. E.; Irwin, M.; Thompson, A. L.; Gutmann, M. J.; Krämer, T.; O'Hare, D. Chem. Commun., 2013, 49, 9755.  doi: 10.1039/c3cc45889j

    7. [7]

      Caputo, C. B.; Zhu, K.-L.; Vukotic, V. N.; Loeb, S. J.; Stephan, D. W. Angew. Chem. Int. Ed. 2013, 52, 960.  doi: 10.1002/anie.201207783

    8. [8]

      Chernichenko, K.; Kótai, B.; Pápai, I.; Zhivonitko, V.; Nieger, M.; Leskelä, M.; Repo; T. Angew. Chem., Int. Ed. 2015, 54, 1749.  doi: 10.1002/anie.201410141

    9. [9]

      Samigullin, K.; Georg, I.; Bolte, M.; Lerner, H. W.; Wagner, M. Chem. Eur. J. 2016, 22, 3478.  doi: 10.1002/chem.v22.10

    10. [10]

      Zheng, J.-H.; Lin, Y.-J.; Wang, H.-D. Dalton Trans. 2016, 45, 6088.  doi: 10.1039/C5DT03815D

    11. [11]

      Mo, Z.-B.; Rit, A.; Campos, J.; Kolychev, E. L.; Aldridge, S. J. Am. Chem. Soc. 2016, 138, 3306.  doi: 10.1021/jacs.6b01170

    12. [12]

      Wang, P.-A.; Sun, X.-L.; Gao, P. Chin. J. Org. Chem. 2011, 31, 1369 (in Chinese).
       

    13. [13]

      Xu, Y.-Y.; Li, Z.; Maxim B.; Nie, W.-L. Prog. Chem. 2012, 24, 1526 (in Chinese).
       

    14. [14]

      Chase, P. A.; Welch, G. C.; Jurca, T.; Stephan, D. W. Angew. Chem., Int. Ed. 2007, 46, 8050.  doi: 10.1002/(ISSN)1521-3773

    15. [15]

      Chase, P. A.; Jurca, T.; Stephan, D. W. Chem. Commun. 2008, 1701.
       

    16. [16]

      Mohr, J.; Oestreich, M. Angew. Chem., Int. Ed. 2014, 53, 13278.  doi: 10.1002/anie.201407324

    17. [17]

      Wei, S.-M.; Feng, X.-Q.; Du, H.-F. Org. Biomol. Chem. 2016, 14, 8026.  doi: 10.1039/C6OB01556E

    18. [18]

      Farrell, J. M.; Heiden, Z. M.; Stephan, D. W. Organometallics 2011, 30, 4497.  doi: 10.1021/om2005832

    19. [19]

      Chatterjee, I.; Oestreich, M. Angew. Chem., Int. Ed. 2015, 54, 1965.  doi: 10.1002/anie.201409246

    20. [20]

      Jiang, C.-F.; Blacque, O.; Berke, H. Chem. Commun. 2009, 5518.
       

    21. [21]

      Scott, D. J.; Fuchter, M. J.; Ashley, A. E. Angew. Chem., Int. Ed. 2014, 53, 10218.  doi: 10.1002/anie.201405531

    22. [22]

      Spies, P.; Schwendemann, S.; Lange, S.; Kehr, G.; Fröhlich, R.; Erker, G. Angew. Chem., Int. Ed. 2008, 47, 7543.  doi: 10.1002/anie.v47:39

    23. [23]

      Wang, G.; Chen, C.; Du, T.-Y.; Zhong, W.-H. Adv. Synth. Catal. 2014, 356, 1747.  doi: 10.1002/adsc.201301007

    24. [24]

      (a) Sumerin, V.; Chernichenko, K.; Nieger, M.; Leskelä, M.; Rieger, B.; Repo, T. Adv. Synth. Catal. 2011, 353, 2093.
      (b) Chernichenko, K.; Nieger, M.; Leskelä, M.; Repo, T. Dalton Trans. 2012, 41, 9029.
      (c) Sumerin, V.; Schulz, F.; Atsumi, M.; Wang, C.; Nieger, M.; Leskelä, M.; Repo, T.; Pyykkö, P.; Rieger, B. J. Am. Chem. Soc. 2008, 130, 14117.

    25. [25]

      Farrell, J. M.; Posaratnanathan, R. T.; Stephan, D. W. Chem. Sci. 2015, 6, 2010.  doi: 10.1039/C4SC03675A

    26. [26]

      Mummadi, S.; Unruh, D. K.; Zhao, J.-Y.; Li, S.-H.; Krempner, C. J. Am. Chem. Soc. 2016, 138, 3286.  doi: 10.1021/jacs.5b13545

    27. [27]

      Schwendemann, S.; Frölich, R.; Kehr, G.; Erker, G. Chem. Sci. 2011, 2, 1842.  doi: 10.1039/c1sc00124h

    28. [28]

      (a) Parks, D. J.; Spence, R. E. v. H.; Piers, W. E. Angew. Chem., Int. Ed. Engl. 1995, 34, 809.
      (b) Parks, D. J.; Piers, W. E.; Yap, G. P. A. Organometallics 1998, 17, 5492.

    29. [29]

      Wang, H.-D.; Fröhlich, R.; Kehr, G.; Erker, G. Chem. Commun. 2008, 5966.
       

    30. [30]

      Greb, L.; Oña-Burgos, P.; Schirmer, B.; Grimme, S.; Stephan, D. W.; Paradies, J. Angew. Chem., Int. Ed. 2012, 51, 10164.  doi: 10.1002/anie.201204007

    31. [31]

      Erõs, G.; Mehdi, H.; Pápai, I.; Rokob, T. A.; Király, P.; Tárkányi, G.; Soós, T. Angew. Chem., Int. Ed. 2010, 49, 6559.  doi: 10.1002/anie.201001518

    32. [32]

      Inés, B.; Palomas, D.; Holle, S.; Steinberg, S.; Nicasio, J. A.; Alcarazo, M. Angew. Chem., Int. Ed. 2012, 51, 12367.  doi: 10.1002/anie.v51.49

    33. [33]

      (a) Greb, L.; Daniliuc, C. G.; Bergander, K.; Paradies, J. Angew. Chem., Int. Ed. 2013, 52, 5876.
      (b) Paradies, J. Angew. Chem., Int. Ed. 2014, 53, 3552.

    34. [34]

      Hounjet, L. J.; Bannwarth, C.; Garon, C. N.; Caputo, C. B.; Grimme, S.; Stephan, D. W. Angew. Chem., Int. Ed. 2013, 52, 7492.  doi: 10.1002/anie.201303166

    35. [35]

      Wang, X.-W.; Kehr, G.; Daniliuc, C. G.; Erker, G. J. Am. Chem. Soc. 2014, 136, 3293.  doi: 10.1021/ja413060u

    36. [36]

      Chernichenko, K.; Madarász, Á.; Pápai, I.; Nieger, M.; Leskelä, M.; Repo, T. Nat. Chem. 2013, 5, 718.  doi: 10.1038/nchem.1693

    37. [37]

      Szeto, K. C.; Sahyoun, W.; Merle, N.; Castelbou, J. L.; Popoff, N.; Lefebvre, F.; Raynaud, J.; Godard, C.; Claver, C.; Delevoye, L.; Gauvinc, R. M.; Taoufik, M. Catal. Sci. Technol. 2016, 6, 882.  doi: 10.1039/C5CY01372K

    38. [38]

      Reddy, J. S.; Xu, B.-H.; Mahdi, T.; Fröhlich, R.; Kehr, G.; Stephan, D. W.; Erker, G. Organometallics 2012, 31, 5638.  doi: 10.1021/om3006068

    39. [39]

      Greb, L.; Oña-Burgos, P.; Kubas, A.; Falk, F. C.; Breher, F.; Finkc, K.; Paradies, J. Dalton Trans. 2012, 41, 9056.  doi: 10.1039/c2dt30374d

    40. [40]

      Longobardi, L. E.; Tang, C.; Stephan, D. W. Dalton Trans. 2014, 43, 15723.  doi: 10.1039/C4DT02648A

    41. [41]

      Mahdi, T.; Stephan, D. W. J. Am. Chem. Soc. 2014, 136, 15809.  doi: 10.1021/ja508829x

    42. [42]

      Scott, D. J.; Fuchter, M. J.; Ashley, A. E. J. Am. Chem. Soc. 2014, 136, 15813.  doi: 10.1021/ja5088979

    43. [43]

      Mahdi, T.; Stephan, D. W. Angew. Chem., Int. Ed. 2015, 54, 8511.  doi: 10.1002/anie.201503087

    44. [44]

      Gyömöre, Á.; Bakos, M.; Földes, T.; Pápai, I.; Domján, A.; Soós, T. ACS Catal. 2015, 5, 5366.  doi: 10.1021/acscatal.5b01299

    45. [45]

      Geier, S. J.; Chase, P. A.; Stephan, D. W. Chem. Commun. 2010, 46, 4884.  doi: 10.1039/c0cc00719f

    46. [46]

      Erös, G.; Nagy, K.; Mehdi, H.; Pápai, I.; Nagy, P.; Király, P.; Tárkányi, G.; Soós, T. Chem. Eur. J. 2012, 18, 574.  doi: 10.1002/chem.v18.2

    47. [47]

      Chen, B.-L.; Wang, B.; Lin, G.-Q. J. Org. Chem. 2010, 75, 941.  doi: 10.1021/jo902424m

    48. [48]

      Segawa, Y.; Stephan, D. W. Chem. Commun. 2012, 48, 11963.  doi: 10.1039/c2cc37190a

    49. [49]

      Mahdi, T.; Heiden, Z. M.; Grimme, S.; Stephan, D. W. J. Am. Chem. Soc. 2012, 134, 4088.  doi: 10.1021/ja300228a

    50. [50]

      Longobardi, L. E.; Mahdi, T.; Stephan, D. W. Dalton Trans. 2015, 44, 7114.  doi: 10.1039/C5DT00921A

    51. [51]

      Mahdi, T.; Castillo, J. N. D.; Stephan, D. W. Organometallics 2013, 32, 1971.  doi: 10.1021/om4000727

    52. [52]

      Liu, Y.-B.; Du, H.-F. J. Am. Chem. Soc. 2013, 135, 12968.  doi: 10.1021/ja406761j

    53. [53]

      Liu Y. -B., Du H. -F. Acta Chim. Sinica 2014, 72, 771 (in Chinese)  doi: 10.6023/A14040344

    54. [54]

      Chen, D.-J.; Klankermayer, J. Chem. Commun. 2008, 2130.
       

    55. [55]

      Chen, D.-J.; Wang, Y.-T.; Klankermayer, J. Angew. Chem., Int. Ed. 2010, 49, 9475.  doi: 10.1002/anie.201004525

    56. [56]

      Ghattas, G.; Chen, D.-J.; Pan, F.-F.; Klankermayer, J. Dalton Trans. 2012, 41, 9026.  doi: 10.1039/c2dt30536d

    57. [57]

      Chen, D.-J.; Leich, V.; Pan, F.-F.; Klankermayer, J. Chem. Eur. J. 2012, 18, 5184.  doi: 10.1002/chem.v18.17

    58. [58]

      Lindqvist, M.; Borre, K.; Axenov, K.; Kótai, B.; Nieger, M.; Leskelä, M.; Pápai, I.; Repo, T. J. Am. Chem. Soc. 2015, 137, 4038.  doi: 10.1021/ja512658m

    59. [59]

      (a) Mewald, M.; Oestreich, M. Chem. Eur. J. 2012, 18, 14079.
      (b) Hermeke, J.; Mewald, M.; Oestreich, M. J. Am. Chem. Soc. 2013, 135, 17537.

    60. [60]

      Süsse, L.; Hermeke, J.; Oestreich, M. J. Am. Chem. Soc. 2016, 138, 6940.  doi: 10.1021/jacs.6b03443

    61. [61]

      Liu, Y.-B.; Du, H.-F. J. Am. Chem. Soc. 2013, 135, 6810.  doi: 10.1021/ja4025808

    62. [62]

      Wei, S.-M.; Du, H.-F. J. Am. Chem. Soc. 2014, 136, 12261.  doi: 10.1021/ja507536n

    63. [63]

      Ren, X.-Y.; Li, G.; Wei, S.-M.; Du, H.-F. Org. Lett. 2015, 17, 990.  doi: 10.1021/acs.orglett.5b00085

    64. [64]

      Ren, X.-Y.; Du, H.-F. J. Am. Chem. Soc. 2016, 138, 810.  doi: 10.1021/jacs.5b13104

    65. [65]

      Ashley, A. E.; Thompson, A. L.; O'Hare, D. Angew. Chem., Int. Ed. 2009, 48, 9839.  doi: 10.1002/anie.v48:52

    66. [66]

      Caputo, C. B.; Hounjet, L. J.; Dobrovetsky, R.; Stephan, D. W. Science 2013, 341, 1374.  doi: 10.1126/science.1241764

    67. [67]

      Hounjet, L. J.; Caputo, C. B.; Stephan, D. W. Dalton Trans. 2013, 42, 2629.  doi: 10.1039/C2DT32711B

    68. [68]

      Porwal, D.; Oestreich, M. Eur. J. Org. Chem. 2016, 3307.

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    3. [3]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    4. [4]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    5. [5]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    6. [6]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    7. [7]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    10. [10]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    11. [11]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    12. [12]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    13. [13]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    14. [14]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    15. [15]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    16. [16]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    17. [17]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    18. [18]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    19. [19]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    20. [20]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

Metrics
  • PDF Downloads(46)
  • Abstract views(3400)
  • HTML views(989)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return