Citation: Lu Yang, Ding Yifan, Wang Jieyu, Pei Jian. Research Progress in Isoindigo-Based Polymer Field-Effect Transistor Materials[J]. Chinese Journal of Organic Chemistry, ;2016, 36(10): 2272-2283. doi: 10.6023/cjoc201606015 shu

Research Progress in Isoindigo-Based Polymer Field-Effect Transistor Materials

  • Corresponding author: Wang Jieyu, jieyuwang@pku.edu.cn Pei Jian, jianpei@pku.edu.cn
  • Received Date: 8 June 2016
    Revised Date: 4 July 2016

    Fund Project: Project supported by the Major State Basic Research Development Program from the Ministry of Science and Technology 973 Program, No.2013CB933501and the National Natural Science Foundation of China No.21302009

Figures(3)

  • Since the 1980 s, organic electronics had made great progress. Organic semiconductors have attracted much attention of scientists from both academy and industry due to their promising applications in low-cost, lightweight, flexible and solution-processable electronics. The development of the third-generation donor-acceptor (D-A) polymers greatly improved the device performance of organic semiconductors. Recently, isoindigo-based polymers develop rapidly, especially as organic field-effect transistors (OFETs) materials, and high hole mobilities up to 3.62 cm2·V-1·s-1 for IID and 14.4 cm2·V-1·s-1 for its derivatives, were successfully achieved. In this review, the recent advance in isoindigo-based polymer field-effect transistor materials is summarized, which focus on the molecular design and synthesis, device fabrication and structure-property rela-tionship study of isoindigo-based polymers, aiming to providing valuable information for the materials exploitation in the future.
  • 加载中
    1. [1]

      Heeger, A. J.; Sariciftci, N. S.; Namdas, E. B. Semiconducting and Metallic Polymers, Oxford University Press, 2010.

    2. [2]

      Chiang, C. K.; Fincher Jr, C.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G. Phys. Rev. Lett. 1977, 39, 1098. 

    3. [3]

      Tsumura, A.; Koezuka, H.; Ando, T. Appl. Phys. Lett. 1986, 49, 1210.

    4. [4]

      Tang, C. W. Appl. Phys. Lett. 1986, 48, 183. 

    5. [5]

      Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913. 

    6. [6]

      Heeger, A. J. Chem. Soc. Rev. 2010, 39, 2354. 

    7. [7]

      Yuen, J. D.; Wudl, F. Energy Environ. Sci. 2013, 6, 392.

    8. [8]

      Nielsen, C. B.; Turbiez, M.; McCulloch, I. Adv. Mater. 2013, 25, 1859.

    9. [9]

      Zhan, X.; Facchetti, A.; Barlow, S.; Marks, T. J.; Ratner, M. A.; Wasielewski, M. R.; Marder, S. R. Adv. Mater. 2011, 23, 268. 

    10. [10]

      Irimia-Vladu, M.; Głowacki, E. D.; Troshin, P. A.; Schwabegger, G.; Leonat, L.; Susarova, D. K.; Krystal, O.; Ullah, M.; Kanbur, Y.; Bodea, M. A. Adv. Mater. 2012, 24, 375. 

    11. [11]

      Papageorgiou, C.; Borer, X. Helv. Chim. Acta 1988, 71, 1079. 

    12. [12]

      Mei, J.; Graham, K. R.; Stalder, R.; Reynolds, J. R. Org. Lett. 2010, 12, 660. 

    13. [13]

      Estrada, L. A.; Stalder, R.; Abboud, K. A.; Risko, C.; Brédas, J.-L.; Reynolds, J. R. Macromolecules 2013, 46, 8832. 

    14. [14]

      Lei, T.; Cao, Y.; Fan, Y.; Liu, C.-J.; Yuan, S.-C.; Pei, J. J. Am. Chem. Soc. 2011, 133, 6099. 

    15. [15]

      Gholamzadeh, P.; Mohammadi Ziarani, G.; Badiei, A.; Abolhassani Soorki, A.; Lashgari, N. Res. Chem. Intermed. 2012, 39, 3925.

    16. [16]

      Bergman, J.; Romero, I. J. Heterocycl. Chem. 2010, 47, 1215. 

    17. [17]

      Zhao, N.; Qiu, L.; Wang, X.; An, Z.; Wan, X. Tetrahedron Lett. 2014, 55, 1040.

    18. [18]

      Bogdanov, A.; Mironov, V.; Musin, L.; Musin, R. Synthesis 2010, 3268.

    19. [19]

      El-Kateb, A.; Hennawy, I.; Shabana, R.; Osman, F. Phosphorus, Sulfur Relat. Elem. 1984, 20, 329.

    20. [20]

      Lathourakis, G. E.; Litinas, K. E. J. Chem. Soc., Perkin Trans. 11996, 491.

    21. [21]

      Minami, T.; Matsumoto, M.; Agawa, T. J. Chem. Soc., Chem. Commun. 1976, 1053b.

    22. [22]

      Wang, E.; Mammo, W.; Andersson, M. R. Adv. Mater. 2014, 26, 1801. 

    23. [23]

      Mei, J.; Kim, D. H.; Ayzner, A. L.; Toney, M. F.; Bao, Z. J. Am. Chem. Soc. 2011, 133, 20130. 

    24. [24]

      Mei, J.; Wu, H. C.; Diao, Y.; Appleton, A.; Wang, H.; Zhou, Y.; Lee, W. Y.; Kurosawa, T.; Chen, W. C.; Bao, Z. Adv. Funct. Mater. 2015, 25, 3455. 

    25. [25]

      Lei, T.; Dou, J. H.; Pei, J. Adv. Mater. 2012, 24, 6457.

    26. [26]

      Lei, T.; Dou, J.-H.; Ma, Z.-J.; Yao, C.-H.; Liu, C.-J.; Wang, J.-Y.; Pei, J. J. Am. Chem. Soc. 2012, 134, 20025. 

    27. [27]

      Lei, T.; Dou, J.-H.; Ma, Z.-J.; Liu, C.-J.; Wang, J.-Y.; Pei, J. Chem. Sci. 2013, 4, 2447.

    28. [28]

      Ashraf, R. S.; Kronemeijer, A. J.; James, D. I.; Sirringhaus, H.; McCulloch, I. Chem. Commun. 2012, 48, 3939.

    29. [29]

      Dutta, G. K.; Han, A. R.; Lee, J.; Kim, Y.; Oh, J. H.; Yang, C. Adv. Funct. Mater. 2013, 23, 5317. 

    30. [30]

      Chen, M. S.; Niskala, J. R.; Unruh, D. A.; Chu, C. K.; Lee, O. P.; Fréchet, J. M. J. Chem. Mater. 2013, 25, 4088. 

    31. [31]

      Xu, S.; Ai, N.; Zheng, J.; Zhao, N.; Lan, Z.; Wen, L.; Wang, X.; Pei, J.; Wan, X. RSC Adv. 2015, 5, 8340.

    32. [32]

      Hasegawa, T.; Ashizawa, M.; Matsumoto, H. RSC Adv. 2015, 5, 61035.

    33. [33]

      Meager, I.; Nikolka, M.; Schroeder, B. C.; Nielsen, C. B.; Planells, M.; Bronstein, H.; Rumer, J. W.; James, D. I.; Ashraf, R. S.; Sadhanala, A.; Hayoz, P.; Flores, J.-C.; Sirringhaus, H.; McCulloch, I. Adv. Funct. Mater. 2014, 24, 7109.

    34. [34]

      Huang, J.; Mao, Z.; Chen, Z.; Gao, D.; Wei, C.; Zhang, W.; Yu, G. Chem. Mater. 2016, 28, 2209.

    35. [35]

      Zhao, N.; Ai, N.; Cai, M.; Wang, X.; Pei, J.; Wan, X. Polym. Chem. 2016, 7, 235.

    36. [36]

      Lei, T.; Dou, J. H.; Cao, X. Y.; Wang, J. Y.; Pei, J. J. Am. Chem. Soc. 2013, 135, 12168. 

    37. [37]

      Lei, T.; Dou, J. H.; Cao, X. Y.; Wang, J. Y.; Pei, J. Adv. Mater. 2013, 25, 6589.

    38. [38]

      Lei, T.; Xia, X.; Wang, J. Y.; Liu, C. J.; Pei, J. J. Am. Chem. Soc. 2014, 136, 2135. 

    39. [39]

      Cao, Y.; Yuan, J.-S.; Zhou, X.; Wang, X.-Y.; Zhuang, F.-D.; Wang, J.-Y.; Pei, J. Chem. Commun. 2015, 51, 10514.

    40. [40]

      He, Y.; Quinn, J.; Deng, Y.; Li, Y. Org. Electron. 2016, 35, 41.

    41. [41]

      Jiang, Y.; Gao, Y.; Tian, H.; Ding, J.; Yan, D.; Geng, Y.; Wang, F. Macromolecules 2016, 49, 2135.

    42. [42]

      Lei, T.; Cao, Y.; Zhou, X.; Peng, Y.; Bian, J.; Pei, J. Chem. Mater. 2012, 24, 1762.

    43. [43]

      Park, K. H.; Cheon, K. H.; Lee, Y. J.; Chung, D. S.; Kwon, S. K.; Kim, Y. H. Chem. Commun. 2015, 51, 8120. 

    44. [44]

      Kim, G.; Kang, S. J.; Dutta, G. K.; Han, Y. K.; Shin, T. J.; Noh, Y. Y.; Yang, C. J. Am. Chem. Soc. 2014, 136, 9477. 

    45. [45]

      Kim, G.; Han, A. R.; Lee, H. R.; Lee, J.; Oh, J. H.; Yang, C. Chem. Commun. 2014, 50, 2180.

    46. [46]

      Grenier, F.; Berrouard, P.; Pouliot, J.-R.; Tseng, H.-R.; Heeger, A. J.; Leclerc, M. Polym. Chem. 2013, 4, 1836.

    47. [47]

      Kim, G.; Han, A. R.; Lee, H. R.; Oh, J. H.; Yang, C. Phys. Chem. Chem. Phys. 2015, 17, 26512. 

    48. [48]

      Lei, T.; Wang, J. Y.; Pei, J. Acc. Chem. Res. 2014, 47, 1117. 

    49. [49]

      Xia, X.; Lei, T.; Pei, J.; Liu, C. Chin. J. Org. Chem. 2014, 34, 1905.

  • 加载中
    1. [1]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    2. [2]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    3. [3]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    4. [4]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    5. [5]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    6. [6]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    7. [7]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    8. [8]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    9. [9]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    10. [10]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    11. [11]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    12. [12]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    13. [13]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    14. [14]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    15. [15]

      Xiaoli Sun Xiang Wu Li Gan Wenming Wan . Barbier Polymerization: A New Teaching Case for Step-Growth Polymerization. University Chemistry, 2025, 40(4): 113-118. doi: 10.12461/PKU.DXHX202406102

    16. [16]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    17. [17]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    20. [20]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

Metrics
  • PDF Downloads(0)
  • Abstract views(2287)
  • HTML views(559)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return