Citation: Li Xiaojin, Sun Yan, Zhang Lei, Peng Bo. Recent Progress in the Chemistry of Keteniminium Salts[J]. Chinese Journal of Organic Chemistry, ;2016, 36(11): 2530-2544. doi: 10.6023/cjoc201605046 shu

Recent Progress in the Chemistry of Keteniminium Salts

  • Corresponding author: Zhang Lei, lzhang@zjnu.cn Peng Bo, pengbo@zjnu.cn
  • Received Date: 31 May 2016
    Revised Date: 16 August 2016

    Fund Project: the State Key Laboratory of Fine Chemicals KF1512the National Natural Science Foundation of China 21502171the Educational Commission of Zhejiang Province Y201328123

Figures(32)

  • Keteniminium salts are unique heteroallenes. The high electrophility and cumulative double bonds render them versatile reactivity. This paper describes the keteniminium salts formed by electrophilic activation of amides or ynamides with non-metal electrophilic reagents. These keteniminium salts mainly undergo electrophilic addition, eletrophilic substitution, cycloaddition with various nucleophiles. In past few years, the study of keteniminium induced electrophilic rearrangement has progressed rapidly. The newly developed rearrangement transformations are also described here.
  • 加载中
    1. [1]

      Ye, J. T.; Ma, S. Acc. Chem. Res. 2014, 47, 989.
      (b) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994.
      (c) Ma, S. Chem. Rev. 2005, 105, 2829.
      (d) Allen, A. D.; Tidwell, T. D. Chem. Rev. 2013, 113, 7287.
      (e) Lu, P.; Wang, Y. G. Chem. Soc. Rev. 2012, 41, 5687.
      (f) Alajarin, M.; Marin-Luna, M.; Vidal, A. Eur. J. Org. Chem. 2012, 5637.
      (g) Lu, P.; Wang, Y. G. Synlett 2010, 165.

    2. [2]

      Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 619.

    3. [3]

      Xing, Y.; Cheng, B.; Wang, J.; Lu, P.; Wang, Y. G. Org. Lett. 2014, 16, 4814.
      (b) Denmark, S. E.; Wilson, T. W. Angew. Chem., Int. Ed. 2012, 51, 9980.

    4. [4]

      Alajarín, M.; Vidal, A.; Ortín, M. M. Org. Biomol. Chem. 2003, 1, 4282.  doi: 10.1039/B310593H

    5. [5]

      Amold, B.; Regitz, M. Angew. Chem., Int. Ed. 1979, 18, 320.
      (b) Alajarín, M.; Sánchez-Andrada, P.; Vidal, A.; Tovar, F. Eur. J. Org. Chem. 2004, 2636.

    6. [6]

      Molina, P.; Alajarín, M.; Vidal, A. J. Org. Chem. 1991, 56, 4008.
      (b) Yang, Y. Y.; Shou, W. G.; Chen, Z. B.; Hong, D.; Wang, Y. G. J. Org. Chem. 2008, 73, 3928.

    7. [7]

      Alajarín, M.; Bonillo, B.; Ortín, M. M.; Sánchez-Andrada, P.; Vidal, A. Org. Lett. 2006, 8, 5645.
      (b) Alajarín, M.; Bonillo, B.; Sánchez-Andrada, P.; Vidal, A. Bautista, D. Org. Lett. 2009, 11, 1365.

    8. [8]

      Snider, B. B. Chem. Rev. 1988, 88, 793.  doi: 10.1021/cr00087a005

    9. [9]

      Dekorver, K. A.; Li, H.-Y.; Lohse, A. G.; Hayashi, R.; Lu, Z.-J.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064.  doi: 10.1021/cr100003s

    10. [10]

      Madelaine, C.; Valerio, V.; Maulide, N. Chem. Asian J. 2011, 6, 2224.
      (b) Kaiser, D.; Maulide, N. J. Org. Chem. 2016, 81, 4421.

    11. [11]

      Marchand-Brynaert, J.; Ghosez, L. J. Am. Chem. Soc. 1972, 94, 2869.  doi: 10.1021/ja00763a061

    12. [12]

      Charette, A. B.; Grenon, M. Can. J. Chem. 2001, 79, 1694.
      (b) Xiao, K.; Wang, A.; Huang, P. Q. Angew. Chem., Int. Ed. 2012, 51, 8314.
      (c) Bechara, W. S.; Pelletier, G.; Charette, A. B. Nat. Chem. 2012, 4, 228.

    13. [13]

      Zificsak, C. A.; Mulder, J. A.; Hsung, R. P.; Rameshkumar, C.; Wei, L.-L. Tetrahedron 2001, 57, 7575.  doi: 10.1016/S0040-4020(01)00681-0

    14. [14]

      Rens, M.; Ghosez, L. Tetrahedron Lett. 1970, 11, 3765.  doi: 10.1016/S0040-4039(01)98583-1

    15. [15]

      Yashi, H.; Yorimitsu, H.; Oshima, K. Chem. Lett. 2008, 37, 40.  doi: 10.1246/cl.2008.40

    16. [16]

      Xu, S.-J.; Liu, J.-Q.; Hu, D.-H.; Bi, X.-H. Green. Chem. 2015, 17, 184.  doi: 10.1039/C4GC01328J

    17. [17]

      Compain, G.; Jouvin, K.; Martin-Mingot, A.; Evano, G.; Marrot, J.; Thibaudeau, S. Chem. Commun. 2012, 48, 5196.  doi: 10.1039/c2cc31768k

    18. [18]

      Métayer, B.; Compain, G.; Jouvin, K.; Martin-Mingot, A.; Bachmann, C.; Marrot, J.; Evano, G.; Thibaudeau, S. J. Org. Chem. 2015, 80, 3397.  doi: 10.1021/jo502699y

    19. [19]

      Tona, V.; de la Torre, A.; Padmanaban, M.; Ruider, S.; González, L.; Maulide, N. J. Am. Chem. Soc. 2016, 138, 8348.  doi: 10.1021/jacs.6b04061

    20. [20]

      Tona, V.; Ruider, S. A.; Berger, M.; Shaaban, S.; Padmanaban, M.; Xie, L.-G.; González, L.; Maulide, N. Chem. Sci. 2016, 7, 6032.  doi: 10.1039/C6SC01945E

    21. [21]

      Theunissen, C.; Métayer, B.; Henry, N.; Compain, G.; Marrot, J.; Martin-Mingot, A.; Thibaudeau, S.; Evano, G. J. Am. Chem. Soc. 2014, 136, 12528.  doi: 10.1021/ja504818p

    22. [22]

      Lecomte, M.; Evano, G. Angew. Chem., Int. Ed. 2016, 55, 4547.  doi: 10.1002/anie.201510729

    23. [23]

      Ghosez, L. Angew. Chem., Int. Ed. 1972, 11, 852.

    24. [24]

      Zhang, Y.-S. Tetrahedron Lett. 2005, 46, 6483.
      (b) Zhang, Y.-S. Tetrahedron 2006, 62, 3917.

    25. [25]

      Ghosez, L.; Notte, P.; Bernard-Henriet, C.; Maurin, R. Heterocyles 1981, 15, 1179.  doi: 10.3987/S-1981-02-1179

    26. [26]

      Zhang, Y.-S.; Hsung, R. P.; Zhang, X.-J.; Huang, J.; Slafer, B. W.; Davis, A. Org. Lett. 2005, 7, 1047.  doi: 10.1021/ol0473391

    27. [27]

      Lumbroso, A.; Behra, J.; Kolleth, A.; Dakas, P. Y.; Karadeniz, U.; Catak, S.; Sulzer-Mossé, S.; De Mesmaker, A. Tetrahedron Lett. 2015, 56, 6541.  doi: 10.1016/j.tetlet.2015.09.103

    28. [28]

      Villedieu-Percheron, J.; Catak, S.; Zurwerra, D.; Staiger, R.; Lachia, M.; De Mesmaker, A. Tetrahedron Lett. 2014, 55, 2446.  doi: 10.1016/j.tetlet.2014.02.135

    29. [29]

      Yamaoka, Y.; Yoshida, T.; Shinozaki, M.; Yamada, K.-I.; Takasu, K. J. Org. Chem. 2015, 80, 957.  doi: 10.1021/jo502467m

    30. [30]

      Viehe, H. G.; Buijle, R.; Fuks, R.; Merényi, R.; Oth, J. M. F. Angew. Chem., Int. Ed. 1967, 6, 77.
      (b) Viehe, H. G. Angew. Chem., Int. Ed. 1967, 6, 767.

    31. [31]

      Ghosez, L.; Haveaux, B.; Viehe, H. G. Angew. Chem., Int. Ed. 1969, 8, 454.  doi: 10.1002/(ISSN)1521-3773

    32. [32]

      Marchand-Brynaert, J.; Ghosez, L. J. Am. Chem. Soc. 1972, 94, 2870.  doi: 10.1021/ja00763a062

    33. [33]

      Falmagne, J.-B.; Escudero, J.; Taleb-Sahraoui, S.; Ghosez, L. Angew. Chem., Int. Ed. 1981, 20, 879.  doi: 10.1002/(ISSN)1521-3773

    34. [34]

      Houge, C.; Frisque-Hesbain, A. M.; Mockel, A.; Ghosez, L. J. Am. Chem. Soc. 1982, 104, 2920.  doi: 10.1021/ja00374a036

    35. [35]

      Brown, R. C. D.; Bataille, C. J. R.; Bruton, G.; Hinks, J. D.; Swain, N. A. J. Org. Chem. 2001, 66, 6719.  doi: 10.1021/jo015829q

    36. [36]

      Shim, P.-J.; Kim, H.-D. Tetrahedron Lett. 1998, 39, 9517.  doi: 10.1016/S0040-4039(98)02228-X

    37. [37]

      Depré, D.; Chen, L.-Y.; Ghosez, L. Tetrahedron 2003, 59, 6797.  doi: 10.1016/S0040-4020(03)00920-7

    38. [38]

      O'Brien, J. M.; Kingsbury, J. S. J. Org. Chem. 2011, 76, 1662.  doi: 10.1021/jo102257k

    39. [39]

      Kolleth, A.; Lumbroso, A.; Tanriver, G.; Catak, S.; Sulzer-Mossé, S.; De Mesmaker, A. Tetrahedron Lett. 2016, 57, 2697.  doi: 10.1016/j.tetlet.2016.04.092

    40. [40]

      Lumbroso, A.; Catak, S.; Sulzer-Mossé, S.; De Mesmaker, A. Tetrahedron Lett. 2014, 55, 5147.
      (b) Lumbroso, A.; Catak, S.; Sulzer-Mossé, S.; De Mesmaker, A. Tetrahedron Lett. 2014, 55, 6721.

    41. [41]

      Domigo, L. R.; Ríos-Gutiérrez, M.; Pérez, P. Tetrahedron 2015, 71, 2421.  doi: 10.1016/j.tet.2015.02.070

    42. [42]

      Shindoh, N.; Kitaura, K.; Takemoto, Y.; Takasu, K. J. Am. Chem. Soc. 2011, 133, 8470.  doi: 10.1021/ja202576e

    43. [43]

      Ficini, J. Tetrahedron Lett. 1966, 7, 6425.  doi: 10.1016/S0040-4039(00)76120-X

    44. [44]

      Mulder, J. A.; Hsung, R. P.; Frederick, M. O.; Tracey, M. R.; Zificsak, C. A. Org. Lett. 2002, 4, 1383.  doi: 10.1021/ol020037j

    45. [45]

      Madelaine, C.; Valerio, V.; Maulide, N. Angew. Chem., Int. Ed. 2010, 49, 1583.  doi: 10.1002/anie.200906416

    46. [46]

      Valerio, V.; Madelaine, C.; Maulide, N. Chem. Eur. J. 2011, 17, 4742.  doi: 10.1002/chem.201003591

    47. [47]

      Peng, B.; O'Donovan, D. H.; Jurberg, I. D.; Maulide, N. Chem. Eur. J. 2012, 18, 16292.  doi: 10.1002/chem.201203293

    48. [48]

      Peng, B.; Geerdink, D.; Maulide, N. J. Am. Chem. Soc. 2013, 135, 14968.  doi: 10.1021/ja408856p

    49. [49]

      Peng, B.; Geerdink, D.; Farès, C.; Maulide, N. Angew. Chem., Int. Ed. 2014, 53, 5462.  doi: 10.1002/anie.v53.21

    50. [50]

      Peng, B.; Huang, X.-L.; Xie, L.-G.; Maulide, N. Angew. Chem., Int. Ed. 2014, 53, 8718  doi: 10.1002/anie.201310865

  • 加载中
    1. [1]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    2. [2]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    3. [3]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    4. [4]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    7. [7]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    8. [8]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    9. [9]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    10. [10]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    11. [11]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    12. [12]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    15. [15]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    16. [16]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    17. [17]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    18. [18]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    19. [19]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    20. [20]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

Metrics
  • PDF Downloads(0)
  • Abstract views(3839)
  • HTML views(1329)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return