Citation: Zhang Xiang, Cong Ying, Lin Guangyu, Guo Xuliang, Cao Yang, Lei Kunhua, Du Yunfei. Recent Advances of the Application of Organoiodine (Ⅲ) Reagents in the Construction of Heterocyclic Compounds[J]. Chinese Journal of Organic Chemistry, ;2016, 36(11): 2513-2529. doi: 10.6023/cjoc201605034 shu

Recent Advances of the Application of Organoiodine (Ⅲ) Reagents in the Construction of Heterocyclic Compounds

  • Corresponding author: Du Yunfei, duyunfeier@tju.edu.cn
  • Received Date: 17 May 2016
    Revised Date: 31 July 2016

    Fund Project: the National Basic Research Project 2015CB856500the National Natural Science Foundation of China 21472136the Tianjin Research Program of Application Foundation and the Ad-vanced Technology 15JCZDJC32900

Figures(32)

  • Hypervalent iodine chemistry has experienced explosive development over the past 30 years. Being a class of mild, efficient and environmentally benign nonmetal oxidants, hypervalent iodine regents, especially iodine (Ⅲ) oxidants have been widely applied to the construction of various heterocyclic skeletons. In this review, the iodine (Ⅲ)-mediated strategies and methods for the synthesis of heterocyclic compounds with different ring size were highlighted.
  • 加载中
    1. [1]

    2. [2]

      Sandin, R. B. Chem. Rev. 1943, 32, 249.
      (b) Banks, D. F. Chem. Rev. 1966, 66, 243.
      (c) Varvoglis, A. Tetrahedron 1997, 53, 1179.
      (d) Tohma, H.; Kita, Y. Adv. Synth. Catal. 2004, 346, 111.
      (e) Zhdankin, V. V. ARKIVOC 2009, i, 1.
      (f) Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 16410.
      (g) Zhou, W.; Zhang, L.; Jiao, N. Angew. Chem., Int. Ed. 2009, 48, 7094.
      (h) Qiu, D.; Zheng, Z.; Mo, F.; Xiao, Q.; Tian, Y.; Zhang, Y.; Wang, J. Org. Lett. 2011, 19, 4988.
      (i) Mu, X.; Wu, T.; Wang, H.; Guo, Y.; Liu, G. J. Am. Chem. Soc. 2012, 134, 878.
      (j) Duan, X.; Duan, X.; Yang, K.; Wang, Z.; Zhang, L.; Tong, Y.; Liu, H.; Du, K.; Tang, R. Chin. J. Org. Chem. 2015, 35, 2552.

    3. [3]

      Kaiho, T. Iodine Chemistry and Applications, John Wiley & Sons, Inc., New York, 2015.

    4. [4]

      Quideau, S.; Lyvinec, G.; Marguerit, M.; Bathany, K.; Ozanne-Beaudenon, A.; Buffeteau, T.; Cavagnat, D.; Chenede, A. Angew. Chem., Int. Ed. 2009, 48, 4605.  doi: 10.1002/anie.v48:25

    5. [5]

      Meprathu, B. V.; Protasiewicz, J. D. Tetrahedron 2010, 66, 5768.
      (b) Meprathu, B. V.; Protasiewicz, J. D. ARKIVOC 2003, vi, 83.
      (c) Song, F.-J.; Wang, C.; Falkowski, J. M.; Ma, L.-Q.; Lin, W.-B. J. Am. Chem. Soc. 2010, 132, 15390.
      (d) Song, F.; Wang, C.; Lin, W. Chem. Commun. 2011, 47, 8256.
      (e) Kim, S.; Lee, Y. S.; Lee, D. H.; Hyun, M. Y.; Hong, J.-Y.; Huh, S.; Kim, C.; Lee, S. J. Inorg. Chem. Commun. 2013, 31, 29.

    6. [6]

      Miyamoto, K.; Suzuki, M.; Suefuji, T.; Ochiai, M. Eur. J. Org. Chem. 2013, 2013, 3662.  doi: 10.1002/ejoc.201300413

    7. [7]

      Li, X. X.; Du, Y. F.; Liang, Z. D.; Li, X. K.; Pan, Y.; Zhao, K. Org. Lett. 2009, 11, 2643.  doi: 10.1021/ol9006663

    8. [8]

      Sun, X. Q.; Lyu, Y. R.; Zhang-Negrerie, D.; Du, Y. F.; Zhao, K. Org. Lett. 2013, 15, 6222.  doi: 10.1021/ol4030716

    9. [9]

      Ton, T. M. U.; Tejo, C.; Tiong, D. L. Y.; Chan, P. W. H. J. Am. Chem. Soc. 2012, 134, 7344.  doi: 10.1021/ja301415k

    10. [10]

      Kiyokawa, K.; Kosaka, T.; Minakata, S. Org. Lett. 2013, 15, 4858.  doi: 10.1021/ol402276f

    11. [11]

      Ye, Y.; Zheng, C.; Fan, R. Org. Lett. 2009, 11, 3156.  doi: 10.1021/ol9012102

    12. [12]

      Ye, Y.; Wang, H.; Fan, R. Org. Lett. 2010, 12, 2802.  doi: 10.1021/ol100885f

    13. [13]

      Gomes, L. F. R.; Veiros, L. F.; Maulide, N.; Afonso, C. A. M. Chem.-Eur. J. 2015, 21, 1449.  doi: 10.1002/chem.201404990

    14. [14]

      Arisawa, M.; Ramesh, N. G.; Nakajima, M.; Tohma, H.; Kita, Y. J. Org. Chem. 2001, 66, 59.  doi: 10.1021/jo000953f

    15. [15]

      Ye, Y.; Wang, L.; Fan, R. J. Org. Chem. 2010, 75, 1760.  doi: 10.1021/jo902553k

    16. [16]

      Dohi, T.; Takenaga, N.; Goto, A.; Maruyama, A.; Kita, Y. Org. Lett. 2007, 9, 3129.  doi: 10.1021/ol071315n

    17. [17]

      Muraki, T.; Togo, H.; Yokoyama, M. J. Chem. Soc., Perkin Trans. 1 1999, 1713.
      (b) Togo, H.; Muraki, T.; Hoshina, Y.; Yamaguchi, K.; Yokoyama, M. J. Chem. Soc., Perkin Trans. 1 1997, 787.

    18. [18]

      Liu, H.; Tan, C.-H. Tetrahedron Lett. 2007, 48, 8220.  doi: 10.1016/j.tetlet.2007.09.078

    19. [19]

      Karila, D.; Leman, L.; Dodd, R. H. Org. Lett. 2011, 13, 5830.
      (b) Geary, G. C.; Hope, E. G.; Stuart, A. M. Angew. Chem., Int. Ed. 2015, 54, 14911.
      (c) Boye, A. C.; Meyer, D.; Ingison, C. K.; French, A. N.; Wirth, T. Org. Lett. 2003, 5, 2157.

    20. [20]

      Karade, N. N.; Shirodkar, S. G.; Patil, M. N.; Potrekar, R. A.; Karade, H. N. Tetrahedron Lett. 2003, 44, 6729.  doi: 10.1016/S0040-4039(03)01644-7

    21. [21]

      Cha, J. Y.; Huang, Y.; Pettus, T. R. R. Angew. Chem., Int. Ed. 2009, 48, 9519.
      (b) Mendelsohn, B. A.; Lee, S.; Kim, S.; Teyssier, F.; Aulakh, V. S.; Ciufolini, M. A. Org. Lett. 2009, 11, 1539.
      (c) Frie, J. L.; Jeffrey, C. S.; Sorensen, E. J. Org. Lett. 2009, 11, 5394.
      (d) Kita, Y.; Tohma, H.; Kikuchi, K.; Inagaki, M.; Yakura, T. J. Org. Chem. 1991, 56, 435.
      (e) Murakata, M.; Yamada, K.; Hoshino, O. J. Chem. Soc., Chem. Commun. 1994, 443.
      (f) Kacan, M.; Koyuncu, D.; McKillop, A. J. Chem. Soc., Perkin Trans. 1 1993, 1771.
      (g) Hara, H.; Inoue, T.; Endoh, M.; Nakamura, H.; Takahashi, H.; Hoshino, O. Heterocycles 1996, 42, 4451.
      (h) Pierce, J. G.; Kasi, D.; Fushimi, M.; Cuzzupe, A.; Wipf, P. J. Org. Chem. 2008, 73, 7807.
      (i) Gu, Y.; Xue, K. Tetrahedron Lett. 2010, 51, 192.
      (j) Liu, Q.; Rovis, T. Org. Process Res. Dev. 2007, 11, 598.

    22. [22]

      Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Kita, Y. Angew. Chem., Int. Ed. 2005, 44, 6193.  doi: 10.1002/(ISSN)1521-3773

    23. [23]

      Uyanik, M.; Yasui, T.; Ishihara, K. Tetrahedron 2010, 66, 5841.
      (b) Uyanik, M.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2010, 49, 2175.
      (c) Dohi, T.; Maruyama, A.; Takenaga, N.; Senami, K.; Mina-mitsuji, Y.; Fujioka, H.; Caemmerer, S. B.; Kita, Y. Angew. Chem., Int. Ed. 2008, 47, 3787.

    24. [24]

      Moriarty, R. M.; Prakash, O.; Duncan, M. P.; Vaid, R. K.; Rani, N. J. Chem. Res., Synop. 1996, 9, 432.

    25. [25]

      Juhasz, L.; Szilagyi, L.; Antus, S.; Visy, J.; Zsila, F.; Simonyi, M. Tetrahedron 2002, 58, 4261.  doi: 10.1016/S0040-4020(02)00360-5

    26. [26]

      Kalpogiannaki, D.; Martini, C.-I.; Nikopoulou, A.; Nyxas, J. A.; Pantazi, V.; Hadjiarapoglou, L. P. Tetrahedron 2013, 69, 1566.  doi: 10.1016/j.tet.2012.12.006

    27. [27]

      Braun, N. A.; Ciufolini, M. A.; Peters, K.; Peters, E.-M. Tetrahedron Lett. 1998, 39, 4667.
      (b) Moriarty, R. M.; Prakash, O. Org. React. 2001, 57, 327.
      (c) Braun, N. A.; Ousmer, M.; Bray, J. D.; Bouchu, D.; Peters, K.; Peters, E.-M.; Ciufolini, M. A. J. Org. Chem. 2000, 65, 4397.
      (d) Braun, N. A.; Bray, J. D.; Ciufolini, M. A. Tetrahedron Lett. 1999, 40, 4985.
      (e) Ousmer, M.; Braun, N. A.; Bavoux, C.; Perrin, M.; Ciufolini, M. A. J. Am. Chem. Soc. 2001, 123, 7534.

    28. [28]

      Cui, J.; Jia, Q.; Feng, R.-Z.; Liu, S.-S.; He, T.; Zhang, C. Org. Lett. 2014, 16, 1442.  doi: 10.1021/ol500238k

    29. [29]

      Francisco, C. G.; Herrera, A. J.; Suarez, E. Tetrahedron:Asymmetry 2000, 11, 3879.  doi: 10.1016/S0957-4166(00)00364-5

    30. [30]

      Zhang, P. F.; Chen, Z. C. J. Chem. Res., Synop. 2001, 150.

    31. [31]

      Kawase, M.; Kitamura, T.; Kikugawa, Y. J. Org. Chem. 1989, 54, 3394.
      (b) Kukosha, T.; Trufilkina, N.; Katkevics, M. Synlett 2011, 17, 2525.
      (c) Kukosha, T.; Trufilkina, N.; Belyakov, S.; Katkevics, M. Synthesis (Germany) 2012, 44, 2413.

    32. [32]

      Du, Y. F.; Liu, R. H.; Linn, G.; Zhao, K. Org. Lett. 2006, 8, 5919.
      (b) Yu, W. Q.; Du, Y. F.; Zhao, K. Org Lett. 2009, 11, 2417.
      (c) Lv, J. L.; Zhang-Negrerie, D.; Deng, J.; Du, Y. F.; Zhao, K. J. Org. Chem. 2014, 79, 1111.
      (d) Shi, H.; Guo, T. J.; Zhang-Negrerie, D.; Du, Y. F.; Zhao, K. Tetrahedron 2014, 70, 2753.

    33. [33]

      Sun, J. Y.; Zhang-Negrerie, D.; Du, Y. F.; Zhao, K. J. Org. Chem. 2015, 80, 1200.  doi: 10.1021/jo502276b

    34. [34]

      Boto, A.; Betancor, C.; Hernandez, R.; Rodriguez, M. S.; Suarez, E. Tetrahedron Lett. 1993, 34, 4865.
      (b) Matcha, K.; Narayan, R.; Antonchick, A. P. Angew. Chem., Int. Ed. 2013, 52, 7985.

    35. [35]

      Wang, Y.; Jiang, M.; Liu, J.-T. Chem.-Eur. J. 2014, 20, 15315.  doi: 10.1002/chem.v20.47

    36. [36]

      Saito, A.; Matsumoto, A.; Hanzawa, Y. Tetrahedron Lett. 2010, 51, 2247.  doi: 10.1016/j.tetlet.2010.02.096

    37. [37]

      Saito, A.; Taniguchi, A.; Kambara, Y.; Hanzawa, Y. Org. Lett. 2013, 15, 2672.  doi: 10.1021/ol4009816

    38. [38]

      Alhalib, A.; Kamouka, S.; Moran, W. J. Org. Lett. 2015, 17, 1453.  doi: 10.1021/acs.orglett.5b00333

    39. [39]

      Yoshimura, A.; Middleton, K. R.; Todora, A. D.; Kastern, B. J.; Koski, S. R.; Maskaev, A. V.; Zhdankin, V. V. Org. Lett. 2013, 15, 4010.
      (b) Xiang, C.; Li, T.; Yan, J. Synth. Commun. 2014, 44, 682.

    40. [40]

      Han, L.; Zhang, B.; Xiang, C.; Yan, J. Synthesis 2014, 46, 503.

    41. [41]

      Yu, Z.; Ma, L.; Yu, W. Synlett 2012, 23, 1534.  doi: 10.1055/s-0031-1290680

    42. [42]

      Zhao, F.; Liu, X.; Qi, R.; Zhang-Negrerie, D.; Huang, J. H.; Du, Y. F.; Zhao, K. J. Org. Chem. 2011, 76, 10338.  doi: 10.1021/jo202070h

    43. [43]

      Ueno, M.; Nabana, T.; Togo, H. J. Org. Chem. 2003, 68, 6424.
      (b) Moriarty, R. M.; Vaid, R. K.; Duncan, M. P. Tetrahedron Lett. 1988, 29, 6913.

    44. [44]

      Das, B.; Srinivas, Y.; Holla, H.; Krishnaiah, M.; Narender, R. Chem. Lett. 2007, 1270.
      (b) Du, L. H.; Wang, Y. G. Synthesis 2007, 675.

    45. [45]

      Kumar, A.; Maurya, R. A.; Ahmad, P. J. Comb. Chem. 2009, 11, 198.
      (b) Saito, A.; Kambara, Y.; Yagyu, T.; Noguchi, K.; Yoshimura, A.; Zhdankin, V. V. Adv. Synth. Catal. 2015, 357, 667.

    46. [46]

      He, T.; Gao, W. C.; Wang, W. K.; Zhang, C. Adv. Synth. Catal. 2014, 356, 1113.  doi: 10.1002/adsc.v356.5

    47. [47]

      Prakash, O.; Batra, H.; Kaur, H.; Sharma, P. K.; Sharma, V.; Singh, S. P.; Moriarty, R. M. Synthesis 2001, 541.

    48. [48]

      Kotali, A. J. Heterocycl. Chem. 1996, 33, 605.  doi: 10.1002/jhet.v33:3

    49. [49]

      Zheng, Z. S.; Ma, S. Y.; Tang, L. L.; Zhang-Negrerie, D.; Deng, J.; Du, Y. F.; Zhao, K. J. Org. Chem. 2014, 79, 4687.  doi: 10.1021/jo500298j

    50. [50]

      Kita, Y.; Egi, M.; Ohtsubo, M.; Saiki, T.; Takada, T.; Tohma, H. Chem. Commun. 1996, 2225.

    51. [51]

      Downer-Riley, N. K.; Jackson, Y. A. Tetrahedron 2008, 64, 7741.  doi: 10.1016/j.tet.2008.06.023

    52. [52]

      Correa, A.; Tellitu, I.; Dominguez, E.; SanMartin, R. Org. Lett. 2006, 8, 4811.  doi: 10.1021/ol061867q

    53. [53]

      Moriarty, R. M.; Tyagi, S. Org. Lett. 2010, 12, 364.
      (b) Katohgi, M.; Togo, H.; Yamaguchi, K.; Yokoyama, M. Tetrahedron 1999, 55, 14885.

    54. [54]

      Inagaki, T.; Nakamura, Y.; Sawaguchi, M.; Yoneda, N.; Ayuba, S.; Hara, S. Tetrahedron Lett. 2003, 44, 4117.  doi: 10.1016/S0040-4039(03)00841-4

    55. [55]

      Fujioka, H.; Komatsu, H.; Nakamura, T.; Miyoshi, A.; Hata, K.; Ganesh, J.; Murai, K.; Kita, Y. Chem. Commun. 2010, 46, 4133.  doi: 10.1039/b925687c

    56. [56]

      Fujita, M.; Yoshida, Y.; Miyata, K.; Wakisaka, A.; Sugimura, T. Angew. Chem., Int. Ed. 2010, 49, 7068.  doi: 10.1002/anie.201003503

    57. [57]

      Wang, X.; Gallardo-Donaire, J.; Martin, R. Angew. Chem., Int. Ed. 2014, 53, 11084.  doi: 10.1002/anie.201407011

    58. [58]

      Kikugawa, Y.; Kawase, M. Chem. Lett. 1990, 4, 581.
      (b). Romero, A. G. Darlington, W. H.; Jacobsen, E. J.; Mickelson, J. W. Tetrahedron Lett. 1996, 37, 2361.
      (c) Tellitu, I.; Urrejola, A.; Serna, S.; Moreno, I.; Herrero, M. T.; Dominguez, E.; SanMartin, R.; Correa, A. Eur. J. Org. Chem. 2007, 437.
      (d) Herrero, M. T.; Tellitu, I.; Dominguez, E.; Hernandez, S.; Moreno, I.; SanMartin, R. Tetrahedron 2002, 58, 8581.
      (e) Herrero, M. T.; Tellitu, I.; Dominguez, E.; Moreno, I.; SanMartin, R. Tetrahedron Lett. 2002, 43, 8273.
      (f) Correa, A.; Tellitu, I.; Dominguez, E.; Moreno, I.; SanMartin, R. J. Org. Chem. 2005, 70, 2256.
      (g) Churruca, F.; SanMartin, R.; Tellitu, I.; Dominguez, E. Eur. J. Org. Chem. 2005, 2481.
      (h) Serna, S.; Tellitu, I.; Dominguez, E.; Moreno, I.; SanMartin, R. Tetrahedron 2004, 60, 6533.
      (i) Churruca, F.; SanMartin, R.; Carril, M.; Urtiaga, M. K.; Solans, X.; Tellitu, I.; Dominguez, E. J. Org. Chem. 2005, 70, 3178.
      (j) Herrero, M. T.; Tellitu, I.; Hernandez, S.; Dominguez, E.; Moreno, I.; SanMartin, R. ARKIVOC 2002, v, 31.
      (k) Serna, S.; Tellitu, I.; Dominguez, E.; Moreno, I.; SanMartin, R. Tetrahedron Lett. 2003, 44, 3483.
      (l) Correa, A.; Tellitu, I.; Dominguez, E.; SanMartin, R. J. Org. Chem. 2006, 71, 8316.
      (m) Serna, S.; Tellitu, I.; Dominguez, E.; Moreno, I.; SanMartin, R. Org. Lett. 2005, 7, 3073.
      (n) Tellitu, I.; Serna, S.; Herrero, M. T.; Moreno, I.; Dominguez, E.; SanMartin, R. J. Org. Chem. 2007, 72, 1526.
      (o) Correa, A.; Tellitu, I.; Dominguez, E.; SanMartin, R. J. Org. Chem. 2006, 71, 3501.
      (p) Correa, A.; Tellitu, I.; Dominguez, E.; SanMartin, R. Tetrahedron 2006, 62, 11100.
      (q) Zhang, X.; Zhang-Negrerie, D.; Du, Y. F.; Zhao, K. J. Org. Chem. 2013, 78, 12750.

    59. [59]

      Kita, Y.; Watanabe, H.; Egi, M.; Saiki, T.; Fukuoka, Y.; Tohma, H. J. Chem. Soc., Perkin Trans. 1 1998, 635.

    60. [60]

      Koag, M.; Lee, S. Org. Lett. 2011, 13, 4766.  doi: 10.1021/ol2017033

    61. [61]

      Kong, W.; Feige, P.; de Haro, T.; Nevado, C. Angew. Chem., Int. Ed. 2013, 52, 2469.
      (b) Suzuki, S.; Kamo, T.; Fukushi, K.; Hiramatsu, T.; Tokunaga, E.; Dohi, T.; Kita, Y.; Shibata, N. Chem. Sci. 2014, 5, 2754.
      (c) Yuan, W.; Szabo, K. Angew. Chem., Int. Ed. 2015, 54, 8533.

    62. [62]

      Okamoto, N.; Miwa, Y.; Minami, H.; Takeda, K.; Yanada, R. Angew. Chem., Int. Ed. 2009, 48, 9693.  doi: 10.1002/anie.200904960

    63. [63]

      Yang, C.; Zhang, X.; Zhang-Negrerie, D.; Du, Y. F.; Zhao, K. J. Org. Chem. 2015, 80, 5320.  doi: 10.1021/acs.joc.5b00576

    64. [64]

      Chen, Z.-W.; Zhu, Y.-Z.; Ou, J.-W.; Wang, Y.-P.; Zheng, J.-Y. J. Org. Chem. 2014, 79, 10988.
      (b) Manna, S.; Antonchick, A. P. Angew. Chem., Int. Ed. 2014, 53, 7324.

    65. [65]

      Liu, L.; Lu, H.; Wang, H.; Yang, C.; Zhang, X.; Zhang-Negrerie, D.; Du, Y. F.; Zhao, K. Org. Lett. 2013, 15, 2906.  doi: 10.1021/ol400743r

    66. [66]

      Taylor, S. R.; Ung, A. T.; Pyne, S. G.; Skelton, B. W.; White, A. H. Tetrahedron 2007, 63, 11377.
      (b) Tohma, H.; Morioka, H.; Takizawa, S.; Arisawa, M.; Kita, Y. Tetrahedron 2001, 57, 345.
      (c) Moreno, I.; Tellitu, I.; Etayo, J.; SanMartin, R.; Dominguez, E. Tetrahedron 2001, 57, 5403.

    67. [67]

      Ishiwata, Y.; Togo, H. Tetrahedron Lett. 2009, 50, 5354.  doi: 10.1016/j.tetlet.2009.07.034

    68. [68]

      Liu, H.; Wei, Y. Tetrahedron Lett. 2013, 54, 4645.  doi: 10.1016/j.tetlet.2013.06.053

    69. [69]

      Zhang, N.; Cheng, R.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. J. Org. Chem. 2014, 79, 10581.
      (b) Yang, L.; Zhang-Negrerie, D.; Zhao, K.; Du, Y. F. J. Org. Chem. 2016, 81, 3372.

    70. [70]

      Takada, T.; Arisawa, M.; Gyoten, M.; Hamada, R.; Tohma, H.; Kita, Y., J. Org. Chem. 1998, 63, 7698.

    71. [71]

    72. [72]

      Shang, S. Y.; Zhang-Negrerie, D.; Du, Y. F.; Zhao, K. Angew. Chem., Int Ed. 2014, 53, 6216.  doi: 10.1002/anie.201402925

    73. [73]

      Kitamura, T.; Yamane, M.; Inoue, K.; Todaka, M.; Fukatsu, N.; Meng, Z.; Fujiwara, Y. J. Am. Chem. Soc. 1999, 121, 11674.  doi: 10.1021/ja992324x

    74. [74]

      Ngatimin, M.; Frey, R.; Levens, A.; Nakano, Y.; Kowalczyk, M.; Konstas, K.; Hutt, O. E.; Lupton, D. W. Org. Lett. 2013, 15, 5858.  doi: 10.1021/ol4029308

    75. [75]

      Chanu, A.; Safir, I.; Basak, R.; Chiaroni, A.; Arseniyadis, S. Eur. J. Org. Chem. 2007, 26, 4305.

    76. [76]

      Cook, S. P.; Danishefsky, S. J. Org. Lett. 2006, 8, 5693.  doi: 10.1021/ol062067i

    77. [77]

    78. [78]

    79. [79]

      Mizar, P.; Laverny, A.; El-Sherbini, M.; Farid, U.; Brown, M.; Malmedy, F.; Wirth, T. Chem.-Eur. J. 2014, 20, 9910.  doi: 10.1002/chem.201403891

    80. [80]

      Wang, J. W.; Yuan, Y. C.; Xiong, R.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Org Lett. 2012, 14, 2210.  doi: 10.1021/ol300418h

    81. [81]

      Wu, H.; He, Y.-P.; Xu, L.; Zhang, D.-Y.; Gong, L.-Z. Angew. Chem., Int. Ed. 2014, 53, 3466.  doi: 10.1002/anie.201309967

    82. [82]

      Zhang, X.; Yang, C.; Zhang-Negrerie, D.; Du, Y. Chem.-Eur. J. 2015, 21, 5193.  doi: 10.1002/chem.201406393

    83. [83]

      Zhang, X.; Hou, W. J.; Zhang-Negrerie, D.; Zhao, K.; Du, Y. F. Org. Lett. 2015, 17, 5252.  doi: 10.1021/acs.orglett.5b02611

    84. [84]

      Zhang, D.-Y.; Xu, L.; Wu, H.; Gong, L.-Z. Chem.-Eur. J. 2015, 21, 10314.  doi: 10.1002/chem.201501583

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    3. [3]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    4. [4]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    5. [5]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    9. [9]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    10. [10]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    11. [11]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    12. [12]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    14. [14]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    15. [15]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    16. [16]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    17. [17]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    18. [18]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    19. [19]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    20. [20]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

Metrics
  • PDF Downloads(0)
  • Abstract views(3829)
  • HTML views(746)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return