Citation: Zhao Feifei, Wu Hongwei, Liu Chuanxiang, Mao Haifang. A Selective Colorimetric and Fluorescent Diphenylacetylene-Based Naphthalimide for Sensing of Cyanide[J]. Chinese Journal of Organic Chemistry, ;2016, 36(11): 2689-2694. doi: 10.6023/cjoc201605027 shu

A Selective Colorimetric and Fluorescent Diphenylacetylene-Based Naphthalimide for Sensing of Cyanide

  • Corresponding author: Liu Chuanxiang, cxliu@sit.edu.cn Mao Haifang, mhf@sit.edu.cn
  • Received Date: 16 May 2016
    Revised Date: 13 June 2016

    Fund Project: the Science and Technology Commission of Shanghai Municipality 15120503700the National Natural Science Foundation of China 21202099

Figures(8)

  • A high selective fluorescent probe 4 for cyanides was developed based on the Sonogashira reaction between N-butyl-4-bromo-1, 8-naphthalimide and 2-ethynylbenzaldehyde. In CH3CN solution, the probe 4 shows moderate colorimetric and fluorescent response to the cyanides. Upon the addition of TBACN, a new peak at 540 nm appeared in the UV-vis spectra accompanied by an instant colorimetric change from colorless to light violet. No change in the spectral pattern of chemosensor 4 was observed in the presence of other anions. Further, chemosensor 4 showed strong fluorescence with the maximum at 484 nm (λex=390 nm) in a mixture of CH3CN; however, in presence of CN-, a new emission band (λem=600 nm, light brown fluo-rescence) appeared along with a decrease in the emission intensity at 484 nm. Therefore, this process clearly demonstrates that chemosensor 4 can selectively detect cyanide ions by a fluorogenic "on-off" response, which may be attributed to the fact that the electron transfer in 1, 8-naphthalimide is affected by the formation of adducts of anion with carbonyl groups. Moreover, the detailed interference experiments of chemosensor 4 in the mixed solvents were also investigated.
  • 加载中
    1. [1]

      Young, C.; Tidwell, L.; Anderson, C. Cyanide:Social, Industrial, and Economic Aspects, The Minerals, Metals & Materials Society, Warrendale, 2001.

    2. [2]

      Baud, F. J. Hum. Exp. Toxicol. 2007, 26, 191.  doi: 10.1177/0960327107070566

    3. [3]

      Koening, R. Science 2000, 287, 1737.  doi: 10.1126/science.287.5459.1737

    4. [4]

      Vallejos, S.; Estevez, P.; Garcia, F. C.; Serna, F.; Pena, J. L.; Garcia, J. M. Chem. Commun. 2010, 46, 7951.  doi: 10.1039/c0cc02143a

    5. [5]

      Way, J. L. Annu. Rev. Pharmacol. 1984, 24, 451.  doi: 10.1146/annurev.pa.24.040184.002315

    6. [6]

      Zamecnik, J.; Tam, J. J. Anal. Toxicol. 1987, 11, 47.  doi: 10.1093/jat/11.1.47

    7. [7]

      Anderson, R. A.; Harland, W. A. Med., Sci. Law 1982, 22, 35.

    8. [8]

      Duke, R. M.; Veale, E. B.; Pfeffer, F. M.; Kruger, P. E.; Gunnlaugsson, T. Chem. Soc. Rev. 2010, 39, 3936.  doi: 10.1039/b910560n

    9. [9]

      Zhang, Y. M.; Lin, Q.; Wei, T. B.; Li, Y.; Qin, X. P. Chem. Commun. 2009, 45, 6074.

    10. [10]

      Du, J.; Hu, M.; Fan, J.; Peng, X. Chem. Soc. Rev. 2012, 41, 4511.  doi: 10.1039/c2cs00004k

    11. [11]

      Yang, Y.; Zhao, Q.; Feng, W.; Li, F. Chem. Rev. 2013, 113, 192.  doi: 10.1021/cr2004103

    12. [12]

      Xu, Z.; Kim, S. K.; Yoon, J. Chem. Soc. Rev. 2010, 39, 1457.  doi: 10.1039/b918937h

    13. [13]

      Hu, J. H.; Yan, N. P.; Chen, J. J.; Li, J. B. Chem. J. Chin. Univ. 2013, 34, 1368 (in Chinese).
       

    14. [14]

      Lin, Q.; Liu, X.; Chen, P.; Wei, T. B.; Zhang, Y. M. Prog. Chem. 2013, 25, 2131 (in Chinese).
       

    15. [15]

      Xu, Z.; Chen, X.; Kim, H. N.; Yoon, J. Chem. Soc. Rev. 2010, 39, 127.  doi: 10.1039/B907368J

    16. [16]

      Lv, X.; Liu, J.; Liu, Y.; Zhao, Y.; Sun, Y. Q.; Wang, P.; Guo, W. Chem. Commun. 2011, 47, 12843.  doi: 10.1039/c1cc15721c

    17. [17]

      Ekmekci, Z.; Yilmaz, M. D.; Akkaya, E. U. Org. Lett. 2008, 10, 461.  doi: 10.1021/ol702823u

    18. [18]

      Chung, Y. M.; Raman, B.; Kim, D. S.; Ahn, K. H. Chem. Commun. 2006, 42, 186.

    19. [19]

      Lee, K. S.; Kim, H. J.; Kim, G. H.; Shin, I.; Hong, J. I. Org. Lett. 2008, 10, 49.  doi: 10.1021/ol7025763

    20. [20]

      Li, H. D.; Li, B.; Jin, L. Y.; Kan, Y. H.; Yin, B. Z. Tetrahedron 2011, 67, 7348.  doi: 10.1016/j.tet.2011.07.023

    21. [21]

      Jo, J.; Olasz, A.; Chen, C. H.; Lee, D. J. Am. Chem. Soc. 2013, 135, 3620.  doi: 10.1021/ja312313f

    22. [22]

      Kolosov, D.; Adamovich, V.; Djurovich, P.; Thompson, M. E.; Adachi, C. J. Am. Chem. Soc. 2002, 124, 9945.  doi: 10.1021/ja0263588

    23. [23]

      Ton, X. A.; Acha, V.; Bonomi, P.; Bui, B. T. S.; Haupt, K. Biosens. Bioelectron. 2015, 64, 359.  doi: 10.1016/j.bios.2014.09.017

    24. [24]

      Zhu, L.; Yuan, Z.; Simmons, J. T.; Sreenath, K. RSC Adv. 2014, 4, 20398.  doi: 10.1039/c4ra00354c

    25. [25]

      Xu, Z. C.; Yoon, J.; Spring, D. R. Chem. Soc. Rev. 2010, 39, 1996.  doi: 10.1039/b916287a

    26. [26]

      Sun, J.-F.; Qian, Y. Chin. J. Org. Chem. 2015, 35, 1104 (in Chinese).  doi: 10.6023/cjoc201411008
       

    27. [27]

      Zhang, C.; Ji, K.; Wang, X.; Wu, H.; Liu, C. Chem. Commun. 2015, 51, 8173.  doi: 10.1039/C5CC01280E

    28. [28]

      Zhou, M.; Chen, J.; Liu, C.; Fu, H.; Zheng, N.; Zhang, C.; Chen, Y.; Cheng, J. Chem. Commun. 2014, 50, 14748.  doi: 10.1039/C4CC07308H

    29. [29]

      Cai, Y. S.; Guo, Z. Q.; Chen, J. M.; Li, W. L.; Zhong, L. B.; Gao, Y.; Jiang, L.; Chi, L. F.; Tian, H.; Zhu, W. H. J. Am. Chem. Soc. 2016, 138, 2219.  doi: 10.1021/jacs.5b11580

    30. [30]

      Tomas-Mendivil, E.; Starck, J.; Ortuno, J. C.; Michelet, V. Org. Lett. 2015, 17, 6126.  doi: 10.1021/acs.orglett.5b03146

    31. [31]

      Scalera, M.; Joyce, A. W. US 2385106, 1945.

    32. [32]

      Wang, X.; Silverman, R. B. J. Org. Chem. 1998, 63, 7357.  doi: 10.1021/jo980976i

  • 加载中
    1. [1]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    4. [4]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    5. [5]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    6. [6]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    7. [7]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    10. [10]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    11. [11]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    12. [12]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    15. [15]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    16. [16]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    17. [17]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    18. [18]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    19. [19]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    20. [20]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

Metrics
  • PDF Downloads(0)
  • Abstract views(925)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return