Citation: Duan Yanan, Jiang Shana, Han Yongchao, Sun Bo, Zhang Chi. Recent Advances in Hypervalent Iodine Chemistry[J]. Chinese Journal of Organic Chemistry, ;2016, 36(9): 1973-1984. doi: 10.6023/cjoc201605007 shu

Recent Advances in Hypervalent Iodine Chemistry

  • Corresponding author: Zhang Chi, zhangchi@nankai.edu.cn
  • Received Date: 7 May 2016
    Revised Date: 11 June 2016

    Fund Project: the Natural Science Foundation of Tianjin City 09JCYBJC05900the National Natural Science Foundation of China 21421062the National Natural Science Foundation of China 20572046the Program for New Century Excellent Talents in University NCET-07-0461the National Natural Science Foundation of China 21121002the National Natural Science Foundation of China 21472094the National Natural Science Foundation of China 20872064the National Natural Science Foundation of China 20421202the National Natural Science Foundation of China 21172110

Figures(15)

  • In recent years, an explosive growth of reactivities of hypervalent iodine reagents has witnessed and these reagents, featuring facile availability and easy handleness, offer multiple advantages over establised methods as an efficient multipurpose oxidants, whose reactivities are similar to derivatives of mercury, chromium, lead, thallium and other heavy metals, but without the toxicity and environmental problems of these heavy metal agents. Thus, hypervalent iodine reagents have received much more attention from the synthetic chemists. This account mainly summarizes our recent research progress in the area of hypervalent iodine chemistry, especially focusing on the excellent performances and unique applications brought about by the new hypervalent iodine reagents and new combinations of them both developed in our group:(1) first utilization of a recyclable iodine(Ⅲ) reagent iodosodilactone for the direct esterification, amidation and peptide synthesis and high efficient liquid-phase oligo-peptide synthesis mediated by a more powerful iodosodilactone-type reagent, 6-(3, 5-bis-(trifluoro-methyl)phenyl)-1H, 4H-23-ioda-2, 3-dioxacyclopenta[hi]indene-1, 4-dione (FPID); (2) design, synthesis and reactivity explo-ration of a new water-soluble hypervalent iodine(V) reagent, 5-trimethylammonio-1, 3-dioxo-1, 3-dihydro-1λ5-benzo[d]-[1, 2]iodoxol-1-ol anion (AIBX); (3) systematic studies of reactivities of the first hypervalent iodine(Ⅲ) reagent iodobenzene dichloride.
  • 加载中
    1. [1]

      Willgerodt C. J. Prakt. Chem., 1886, 33: 154.

    2. [2]

      Dess D. B., Martin J. C. J. Org. Chem., 1983, 48: 4155.  doi: 10.1021/jo00170a070

    3. [3]

      For relevant reviews and books in the last three years, see:
      (a) Yoshimura A., Zhdankin V. V.Chem. Rev., 2016, 116: 3328.
      (b) Chen J., Qu H.-M., Peng J., Chen C.Chin. J. Org. Chem., 2015, 35: 937(in Chinese).
      (陈静, 曲红梅, 彭静, 陈超, 有机化学, 2015, 35, 937.)
      (c) Charpentier J., Fruh N., Togni A.Chem. Rev., 2014, 115: 650.
      (d) Zhdankin V. V. Hypervalent Iodine Chemistry:Preparation, Structure and Synthetic Application of Polyvalent Iodine Compounds, John Wiley & Sons Ltd., New York, 2014.
      (e) Zhang X., Cong Y., Lin G., Guo X., Cao Y., Lei K., Du Y. Chin. J. Org. Chem. 2016, DOI:10.6023/cjoc201605034(in Chinese).
      (张翔, 丛颖, 林光宇, 郭旭亮, 曹阳, 雷坤华, 杜云飞, 有机化学, 2016, [DOI:10.6023/cjoc201605034]

    4. [4]

      Hwang W. K.Acta Chim. Sinica, 1956, 22: 292(in Chinese).

    5. [5]

      Banks D. F. Chem. Rev., 1966, 66: 243.  doi: 10.1021/cr60241a001

    6. [6]

      Ma B., Wang S.-G., Tan Z., Li Y.-L., Hwang W. K. J.Lanzhou Univ. (Nat. Sci.) 1984, S2, 104(in Chinese).
      (马斌, 王帅歌, 谭镇, 李裕林, 黄文魁, 兰州大学学报(自然科学类), 1984, S2, 104.)
      (b) Hou Z.-J., Chen Y., Li Y.-L. Acta Chim. Sin., 1989, 47: 516(in Chinese).
      (侯自杰, 陈渝, 李裕林, 化学学报, 1989, 47, 516.)
      (c) Hou Z.-J., Hwang W. K. J.Lanzhou Univ. (Nat. Sci.), 1984, 20: 67(in Chinese).
      (侯自杰, 黄文魁, 兰州大学学报(自然科学类), 1984, 20, 67.)
      (d) Tu Y.-Q., Hou Z.-J., Li Y.-L., Hwang W. K.Chem. J. Chin. Univ., 1988, 9: 97(in Chinese).
      (凃永强, 侯自杰, 李裕林, 黄文魁, 高等学校化学学报, 1988, 9, 97).
      (e) Tu Y.-Q., Hou Z.-J., Li Y.-L. J.Lanzhou Univ. (Nat. Sci.), 1984, 20: 274(in Chinese).
      (凃永强, 侯自杰, 李裕林, 兰州大学学报(自然科学类), 1984, 20, 274.)
      (f) Tu Y.-Q., Hou Z.-J., Li Y.-L., Hwang W. K. J.Lanzhou Univ. (Nat. Sci.), 1990, 26: 30(in Chinese).
      (凃永强, 侯自杰, 李裕林, 黄文魁, 兰州大学学报(自然科学类), 1990, 26, 30.)

    7. [7]

      For selected examples, see:
      (a) Chen Z. C., Jin Y. Y., Stang P. J. J.Org. Chem., 1987, 52: 4115.
      (b) Chen Z. C., Jin Y. Y., Stang P. J. J.Org. Chem., 1987, 52: 4117.

    8. [8]

      Zhu S.-Z., Chen Q.-Y. J. Chem. Soc., Chem. Commun. 1990, 1459.

    9. [9]

      Yang R.-Y., Dai L.-X., Chen. C.-G. J.Chem. Soc., Chem. Commun. 1992, 1487.
      (b) Yang R.-Y., Dai L.-X. Mendeleev Commun., 1993, 3: 82.

    10. [10]

      Agosta W. C. Tetrahedron Lett., 1965, 6: 2681.  doi: 10.1016/S0040-4039(01)99525-5

    11. [11]

      Ehrlich B. S., Kaplan M. J.Chem. Phys., 1971, 54: 612.  doi: 10.1063/1.1674886

    12. [12]

      Tian J., Gao W.-C., Zhou D.-M., Zhang C. Org. Lett., 2012, 14: 3020.  doi: 10.1021/ol301085v

    13. [13]

      Zhang C., Liu S.-S., Sun B., Tian J.Org. Lett., 2015, 17: 4106.  doi: 10.1021/acs.orglett.5b02045

    14. [14]

      Song A., Zhang C.Acta Chim. Sinica, 2015, 73: 1002(in Chinese).

    15. [15]

      Hartmann C., Meyer V.Ber. Dtsch. Chem. Ges., 1893, 26: 1727.  doi: 10.1002/(ISSN)1099-0682

    16. [16]

      Cui L.-Q., Dong Z.-L., Liu K., Zhang C.Org. Lett., 2011, 13: 6488.  doi: 10.1021/ol202777h

    17. [17]

      Duan Y.-N., Cui L.-Q., Zuo L.-H., Zhang C.Chem. Eur. J., 2015, 21: 13052.  doi: 10.1002/chem.201502450

    18. [18]

      Azuma T., Tanaka Y., Kikuzaki H.Phytochemistry, 2008, 69: 2743.  doi: 10.1016/j.phytochem.2008.09.001

    19. [19]

      Sharma M., Gupta M., Singh D., Kumar M., Kaur P.Chem. Biol. Drug. Des., 2013, 82: 156.
      (b) Tsai T.-Y., Yeh T.-K., Chen X., Hsu T., Jao Y.-C., Huang C.-H., Song J.-S., Huang Y.-C., Chien C.-H., Chiu J.-H., Yen S.-C., Tang H.-K., Chao Y.-S., Jiaang W.-T. J.Med. Chem., 2010, 53: 6572.

    20. [20]

      Asahina Y., Takei M., Kimura T., Fukuda Y. J.Med. Chem., 2008, 51: 3238.  doi: 10.1021/jm701428b

    21. [21]

      Cui J., Jia Q., Feng R.-Z., Liu S.-S., He T., Zhang C.Org. Lett., 2014, 16: 1442.  doi: 10.1021/ol500238k

    22. [22]

      Yu J., Liu S.-S., Cui J., Hou X.-S., Zhang C.Org. Lett., 2012, 14: 832.  doi: 10.1021/ol203358f

    23. [23]

      Cui L.-Q., Liu K., Zhang C.Org. Biomol. Chem., 2011, 9: 2258.  doi: 10.1039/c0ob00722f

    24. [24]

      Dohi T., Maruyama A., Takenaga N., Senami K., Mina-mitsuji Y., Fujioka H., Caemmerer S. B., Kita Y.Angew. Chem., Int. Ed., 2008, 47: 3787.
      (b) Xie J.-H., Zhou Q.-L.Acc. Chem. Res., 2008, 41: 581.

    25. [25]

      Uyanik M., Yasui T., Ishihara K.Angew. Chem., Int. Ed., 2010, 49: 2175  doi: 10.1002/anie.v49:12

    26. [26]

      Yu J., Cui J., Hou X.-S., Liu S.-S., Gao W.-C., Jiang S., Tian J., Zhang C.Tetrahedron:Asymmetry, 2011, 22: 2039.  doi: 10.1016/j.tetasy.2011.12.003

    27. [27]

      Zhao X.-F., Zhang C. Synthesis 2007, 551.

    28. [28]

      Li X.-Q., Zhao X.-F., Zhang C. Synthesis 2008, 2589.

    29. [29]

      Li X.-Q., Wang W.-K., Zhang C.Adv. Synth. Catal., 2009, 351: 2342.  doi: 10.1002/adsc.v351:14/15

    30. [30]

      Li X.-Q., Wang W.-K., Han Y.-X., Zhang C.Adv. Synth. Catal., 2010, 352: 2588.  doi: 10.1002/adsc.v352:14/15

    31. [31]

      Barbachyn M. R., Ford C. W.Angew. Chem., Int. Ed., 2003, 42: 2010.
      (b) Sullivan, Ma. C., Nightingale C. H., Quintiliani R., Sweeney K.Pharm. J. Hum. Pharm. Drug Therapy, 2012, 13: 607.
      (c) D'Ambrosio M., Guerriero A., Debitus C., Ribes O., Pusset J., Leroy S., Pietra F.Chem. Commun. 1993, 1305.
      (d) D'Ambrosio M., Guerriero A., Chiasera G., Pietra F. Helv. Chim. Acta, 1994, 77: 1895.
      (e) Hitotsuyanagi Y., Hikita M., Uemura G., Fukaya H., Takeya K.Tetrahedron, 2011, 67: 455.

    32. [32]

      He T., Gao W.-C., Wang W.-K., Zhang C.Adv. Synth. Catal., 2014, 356: 1113.  doi: 10.1002/adsc.v356.5

    33. [33]

      Yu J., Tian J., Zhang C.Adv. Synth. Catal., 2010, 352: 531.  doi: 10.1002/adsc.v352:2/3

    34. [34]

      Ye C., Twamley B., Shreeve J. M.Org. Lett., 2005, 7: 3961.
      (b) Schardt B. C., Hill C. L.Inorg. Chem., 1983, 22: 1563.

  • 加载中
    1. [1]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    2. [2]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    3. [3]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    4. [4]

      Kexin Feng Jie Zhang Yujia Sun Qiong Ai Longchun Li . 乙酰二茂铁和二茂铁甲酰丙酮的合成、纯化及表征. University Chemistry, 2025, 40(8): 307-314. doi: 10.12461/PKU.DXHX202409045

    5. [5]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    6. [6]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    7. [7]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    8. [8]

      Lin Ding Jinpeng Zhang Junfeng Li Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    11. [11]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    12. [12]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    13. [13]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    14. [14]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    15. [15]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    16. [16]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    17. [17]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    18. [18]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    19. [19]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    20. [20]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

Metrics
  • PDF Downloads(0)
  • Abstract views(3284)
  • HTML views(947)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return