Citation: Yu Lu, Cheng Yuyu, Li Rou, Jiao Yanhua, Li Pengfei. Tandem Cyclization Reaction between Optically Active γ-Nitro Ketone and Chalcone towards the Synthesis of Chiral Cyclohexane Skeletons Bearing Five Stereocenters[J]. Chinese Journal of Organic Chemistry, ;2016, 36(7): 1572-1579. doi: 10.6023/cjoc201605006 shu

Tandem Cyclization Reaction between Optically Active γ-Nitro Ketone and Chalcone towards the Synthesis of Chiral Cyclohexane Skeletons Bearing Five Stereocenters

  • Corresponding author: Jiao Yanhua, yhjiao@hznu.edu.cn Li Pengfei, lipf@sustc.edu.cn;flyli1980@gmail.com
  • Received Date: 4 May 2016
    Revised Date: 31 May 2016

    Fund Project: the National Natural Science Foundation of China No. 21302089the Research Grant in 2015 of the South University of Science and Technology of China No. FRG-SUSTC1501A-57the Science and Technology Development Program of Hangzhou No. 20130533B14

Figures(3)

  • Chiral cyclohexane motif is widespread in the molecular structures of nature products and medicinal chemicals. And polysubstituted chiral cyclohexanes are important building blocks in organic synthesis. A tandem cyclization via asymmetric induction for the construction of polysubstituted chiral cyclohexane skeletons is described. In the presence of phase-transfer-catalyst, optically active γ-nitro ketone reacted with chalcone smoothly to afford cyclohexane skeletons bearing five consecutive stereocenters in 40%~71% yields with 90%~98% ee. It should be noted that the scope of chalcone is broad. Especially, the asymmetric induction is kept at a high level in each step of the tandem cyclization reaction.
  • 加载中
    1. [1]

      For selected reviews, see: (a) Tietze, L. F. Chem. Rev. 1996, 96, 115. (b) Parsons, P. J.; Penkett, C. S.; Shell, A. J. Chem. Rev. 1996, 96, 195. (c) Pellissier, H. Tetrahedron 2006, 62, 1619. (d) Pellissier, H. Tetrahedron 2006, 62, 2143. (e) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134. (f) Chapman, C. J.; Frost, C. G. Synthesis 2007, 1. (g) Enders, D.; Grondal, C.; Hüttl, M. R. M. Angew. Chem., Int. Ed. 2007, 46, 1570. (h) Nicolaou, K. C.; Chen, J. S. Chem. Soc. Rev. 2009, 38, 2993. (i) Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2, 167. (j) Ruiz, M.; López-Alvarado, P.; Giorgi, G., Menéndez, J. C. Chem. Soc. Rev. 2011, 40, 3445. (k) Albrecht, Ł.; Jiang, H.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2011, 50, 8492. (l) Pellissier, H. Adv. Synth. Catal. 2012, 354, 237. (m) Pellissier, H. Chem. Rev. 2013, 113, 442. (n) Volla, C. M. R.; Atodiresei, I.; Rueping, M. Chem. Rev. 2014, 114, 2390. (o) Vetica, F.; de Figueiredo, R. M.; Orsini, M.; Tofani, D.; Gasperi, T. Synthesis 2015, 47, 2139. 

    2. [2]

      Merino, P.; Marqués-López, E.; Tejero, T.; Herrera, R. P. Synthesis 2010, 1. (b) Moyano, A.; Rios, R. Chem. Rev. 2011, 111, 4703. (c) Pellissier, H. Tetrahedron 2012, 68, 2197. (d) Xie, P.; Huang, Y. Eur. J. Org. Chem. 2013, 6213. (e) Yang, X.; Wang, J.; Li, P. Org. Biomol. Chem. 2014, 12, 2499.

    3. [3]

      Posner, G. H. Chem. Rev. 1986, 86, 831. (b) Schultz, A. G. Acc. Chem. Res. 1990, 23, 207. (c) Li J. K. In Name Reaction for Carbocyclic Ring Formarions, Wiley, Hoboken, NJ, 2010, p. 197-142. (d) Goudedranche, S.; Raimondi, W.; Bugaut, X.; Constantieux, T.; Bonne, D.; Rodriguez, J. Synthesis 2013, 45, 1909. 

    4. [4]

      Enders, D.; Hüttl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006, 441, 861. (b) Enders, D.; Hüttl, M. R. M.; Runsink, J.; Raabe, G.; Wendt, B. Angew. Chem., Int. Ed. 2007, 46, 467. (c) Enders, D.; Hüttl, M. R. M.; Raabe, G.; Bats, J. W. Adv. Synth. Catal. 2008, 350, 267. (d) Ishikawa, H.; Suzuki, T.; Orita, H.; Uchimaru, T.; Hayashi, Y. Chem. Eur. J. 2010, 16, 12616. (e) Anwar, S.; Chang, H.-J.; Chen, K. Org. Lett. 2011, 13, 2200. (f) Ma, G.; Lin, S.; Ibrahem, I.; Kubik, G.; Liu, L.; Sun, J.; Córdova, A. Adv. Synth. Catal. 2012, 354, 2865.

    5. [5]

      Han, B.; Xiao, Y.-C.; He, Z.-Q.; Chen, Y.-C. Org. Lett. 2009, 11, 4660. (b) Wang, Y.; Yu, D.-F.; Liu, Y.-Z.; Wei, H.; Luo, Y.-C.; Dixon, D. J.; Xu, P.-F. Chem. Eur. J. 2010, 16, 3922.

    6. [6]

      Ishikawa, H.; Sawano, S.; Yasui, Y.; Shibata, Y.; Hayashi, Y. Angew. Chem., Int. Ed. 2011, 50, 3774. (b) Hahn, R.; Raabe, G.; Enders, D. Org. Lett. 2014, 16, 3636. 

    7. [7]

      Mao, Z.; Jia, Y.; Xu, Z.; Wang, R. Adv. Synth. Catal. 2012, 354, 1401. (b) Enders, D.; Hahn, R.; Atodiresei, I. Adv. Synth. Catal. 2013, 355, 1126. (c) Chauhan, P.; Mahajan, S.; Loh, C. C. J.; Raabe, G.; Enders, D. Org. Lett. 2014, 16, 2954. (d) Chauhan, P.; Urbanietz, G.; Raabe, G.; Enders, D. Chem. Commun. 2014, 50, 6853. (e) Zhou, R.; Wu, Q.; Guo, M.; Huang, W.; He, X.; Yang, L.; Peng, F.; He, G.; Han, B. Chem. Commun. 2015, 51, 13113. 

    8. [8]

      Xie, X.; Peng, C.; He, G.; Leng, H.-J.; Wang, B.; Huang, W.; Han, B. Chem. Commun. 2012, 48, 10487.

    9. [9]

      Varga, S.; Jakab, G.; Drahos, L.; Holczbauer, T.; Czugler, M.; Soós, T. Org. Lett. 2011, 13, 5416. (b) Sun, J.; Jiang, C.; Zhou, Z. Eur. J. Org. Chem. 2016, 1165.

    10. [10]

      Duan, J.-D.; Cheng, J.; Li, P.-F. Org. Chem. Front. 2015, 2, 1048.

    11. [11]

      Yu, L.; Yang, Z.; Peng, J.-Z.; Li, P.-F. Eur. J. Org. Chem. 2016, 535.

    12. [12]

      Yu, L.; Yang, Q.-J.; Li, P.-F. Eur. J. Org. Chem. 2014, 7499.

    13. [13]

      Huang, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2006, 128, 7170. 

  • 加载中
    1. [1]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    2. [2]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    3. [3]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    4. [4]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    5. [5]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    6. [6]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    7. [7]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    8. [8]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    9. [9]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    10. [10]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    11. [11]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    12. [12]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    13. [13]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    14. [14]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    15. [15]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    16. [16]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    17. [17]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    18. [18]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    19. [19]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    20. [20]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

Metrics
  • PDF Downloads(0)
  • Abstract views(1529)
  • HTML views(161)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return