Citation: You Liqin, Yuan Jinwei, Yang Liangru, Xiao Yongmei, Mao Pu. Progress in the Synthesis of 2-Aminobenzoxazole Derivatives[J]. Chinese Journal of Organic Chemistry, ;2016, 36(11): 2634-2650. doi: 10.6023/cjoc201604044 shu

Progress in the Synthesis of 2-Aminobenzoxazole Derivatives

  • Corresponding author: Yuan Jinwei, yuanjinweigs@126.com
  • Received Date: 21 April 2016
    Revised Date: 28 May 2016

    Fund Project: the Program for Innovative Research Team from Zhengzhou 131PCXTD605the National Natural Science Foundation of China 21302042the National Natural Science Foundation of China 21172055the Natural Science Foundation in Henan Province Department of Education 14B150053the Natural Science Foundation from Technology bureau of Zhengzhou City 20130883the Department of Henan Province Natural Science and Technology Foundation 142102210410

Figures(28)

  • 2-Aminobenzoxazole derivatives are a kind of heterocyclic compounds, which play important roles in medicine, biology and material science, and their synthetic methods have attracted much attention. In recent years, many efficient, green synthetic approaches of 2-aminobenzoxazole derivatives using transition-metal or metal-free catalytic systems have been reported. Based on differences of reaction substrates and synthetic methods, the recent advances in the synthesis of 2-aminobenzoxazole derivatives are reviewed.
  • 加载中
    1. [1]

      Alper-Hayta, S.; Arisoy, M.; Temiz-Arpaci, Ö.; Yildiz, I.; Aki, E.; Özkan, S.; Kaynak, F. Eur. J. Med. Chem. 2008, 43, 2568.  doi: 10.1016/j.ejmech.2007.12.019

    2. [2]

      Safak, C.; Erdogan, H.; Palaska, E.; Sunal, R.; Duru, S. J. Med. Chem. 1992, 35, 1296.  doi: 10.1021/jm00085a018

    3. [3]

      Hal, I. H.; Peaty, N. J.; Henry, J. R.; Easmon, J.; Heinisch, G.; Pürstinger, G. Arch. Pharm. 1999, 332, 115.  doi: 10.1002/(ISSN)1521-4184

    4. [4]

      Ge, F.; Wang, Z.; Wan, W.; Lu, W.; Hao, J. Tetrahedron Lett. 2007, 48, 3251.  doi: 10.1016/j.tetlet.2007.03.015

    5. [5]

      Ren, P.; Salihu, I.; Scopelliti, R.; Hu, X. L. Org. Lett. 2012, 14, 1748.  doi: 10.1021/ol300348w

    6. [6]

      Wu, X. J.; See, J. W. T.; Xu, K.; Hirao, H.; Roger, J.; Hierso, J. C.; Zhou, J. R. Angew. Chem., Int. Ed. 2014, 53, 13573.  doi: 10.1002/anie.201408355

    7. [7]

      Yang, K.; Chen, X. Y.; Wang, Y. Q.; Li, W. Q.; Kadi, A. A.; Fun, H. K.; Sun, H.; Zhang, Y.; Li, G. G.; Lu, H. J. J. Org. Chem. 2015, 80, 11065.  doi: 10.1021/acs.joc.5b01450

    8. [8]

      Yang, K.; Zhang, C.; Wang, P.; Zhang, Y.; Ge, H. B. Chem. Eur. J. 2014, 20, 7241.  doi: 10.1002/chem.201402516

    9. [9]

      Wu, X. F.; Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 7316.  doi: 10.1002/anie.v49:40

    10. [10]

      Huang, J. K.; Chan, J.; Chen, Y.; Borths, C. J.; Baucom, K. D.; Larsen, R. D. Faul, M. M. J. Am. Chem. Soc. 2010, 132, 3674.  doi: 10.1021/ja100354j

    11. [11]

      Zhu, F.; Wang, Z. X. Org. Lett. 2015, 17, 1601.  doi: 10.1021/acs.orglett.5b00510

    12. [12]

      Shibahara, F.; Yamaguchi, E.; Murai, T. Chem. Commun. 2010, 46, 2471.  doi: 10.1039/b920794e

    13. [13]

      Matsuyama, N.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2009, 11, 4156.  doi: 10.1021/ol901684h

    14. [14]

      Kim, S. H.; Yoon, J.; Chang, S. Org. Lett. 2011, 13, 1474.  doi: 10.1021/ol200154s

    15. [15]

      Parsharamulu, T.; Reddy, P. V.; Likhar, P. R.; Lakshmi, M. Tetrahedron 2015, 71, 1975.  doi: 10.1016/j.tet.2015.02.020

    16. [16]

      Hou, C. D.; Ren, Y. L.; Lang, R.; Hu, X. X.; Xia, C. G.; Li, F. W. Chem. Commun. 2012, 48, 5181.  doi: 10.1039/c2cc30429e

    17. [17]

      Kim, J. Y.; Cho, S. H.; Joseph, J.; Chang, S. Angew. Chem., Int. Ed. 2010, 49, 9899.  doi: 10.1002/anie.v49.51

    18. [18]

      Neyts, J.; De Clercq, E.; Singha, R.; Chang, Y. H.; Das, A. R.; Chakraborty, S. K.; Hong, S. C.; Tsay, S. C.; Hsu, M. H.; Hwu, J. R. J. Med. Chem. 2009, 52, 1486.  doi: 10.1021/jm801240d

    19. [19]

      Cox, C. D.; Breslin, M. J.; Whitman, D. B.; Schreier, J. D.; McGaughey, G. B.; Bogusky, M. J.; Roecker, A. J.; Mercer, S. P.; Bednar, R. A.; Lemaire, W.; Bruno, J. G.; Reiss, D. R.; Harrell, M.; Murphy, K. L.; Garson, S. L.; Doran, S. M.; Prueksaritanont, T.; Anderson, W. B.; Tang, C.; Roller, S.; Cabalu, T. D.; Cui, D. H.; Hartman, G. D.; Young, S. D.; Koblan, K. S.; Winrow, C. J.; Renger, J. J.; Coleman, P. J. J. Med. Chem. 2010, 53, 5320.  doi: 10.1021/jm100541c

    20. [20]

      Seregin, I.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173.  doi: 10.1039/b606984n

    21. [21]

      Xiao, L. W.; Gao, H. J.; Kong, J.; Liu, G. X.; Peng, X. X.; Wang, S. J. Chin. J. Org. Chem. 2014, 34, 1048.  doi: 10.6023/cjoc201401030
       

    22. [22]

      Kaupp, G.; Schmeyers, J.; Boy, J. Chem. Eur. J. 1998, 4, 2467.  doi: 10.1002/(SICI)1521-3765(19981204)4:12<>1.0.CO;2-I

    23. [23]

      Wu, Y. Q.; Limburg, D. C.; Wilkinson, D. E.; Hamilton, G. S. J. Heterocycl. Chem. 2003, 40, 191.  doi: 10.1002/jhet.v40:1

    24. [24]

      El-Faham, A.; Chebbo, M.; Abdul-Ghani, M.; Younes, G. Heterocycl. Chem. 2006, 43, 599.  doi: 10.1002/jhet.v43:3

    25. [25]

      Cioffi, C. L.; Lansing, J. J.; Yüksel, H. J. Org. Chem. 2010, 75, 7942.  doi: 10.1021/jo1017052

    26. [26]

      Carpenter, R. D.; Kurth, M. J. Nat. Protoc. 2010, 5, 1731.  doi: 10.1038/nprot.2010.132

    27. [27]

      Zhang, X. Y.; Jia, X. F.; Wang, J. J.; Fan, X. S. Green Chem. 2011, 13, 413.  doi: 10.1039/C0GC00418A

    28. [28]

      Guo, X. J.; Guo, Q.; Zhao, W.; Zhang, X. Y. J. Henan Normal Univ. (Nat. Sci. Ed. 2013, 41, 85 (in Chinese).
       

    29. [29]

      Guntreddi, T.; Allam, B. K.; Singh, K. N. RSC Adv. 2013, 3, 9875.  doi: 10.1039/c3ra41189c

    30. [30]

      Kasthuri, M.; Sharath Babu, H.; Shiva Kumar, C.; Nagendra Kumar, P. V. Synlett 2015, 26, 897.  doi: 10.1055/s-00000083

    31. [31]

      Lin, C. C.; Hsieh, T. H.; Liao, P. Y.; Liao, Z. Y.; Chang, C. W.; Shih, Y. C.; Yeh, W. H.; Chien, T. C. Org. Lett. 2014, 16, 892.  doi: 10.1021/ol403645y

    32. [32]

      Naga Raju, G. N.; Prasanna, T. S. K. T. World J. Pharm. Sci. 2015, 4, 1082.

    33. [33]

      Vardhan Reddy, K. H.; Anil Kumar, B. S. P.; Prakash Reddy, V.; Uday Kumar, R.; Nageswar, Y. V. D. RSC Adv. 2014, 4, 45579.  doi: 10.1039/C4RA05447D

    34. [34]

      Yamato, M.; Takeuchi, Y.; Hattori, K.; Hashigaki, K. Chem. Pharm. Bull. 1984, 32, 3053.  doi: 10.1248/cpb.32.3053

    35. [35]

      Saladino, R.; Crestini, C.; Occhionero, F.; Nicoletti, R. Synth. Commun. 1996, 26, 3241.  doi: 10.1080/00397919608004633

    36. [36]

      Kövér, J.; Tímár, T.; Tompa, J. Synthesis 1994, 1124.

    37. [37]

      Kim, J. Y.; Cho, S. H.; Joseph, J.; Chang, S. Angew. Chem. 2010, 122, 10095.  doi: 10.1002/ange.v122.51

    38. [38]

      Gu, J.; Cai, C. Synlett 2015, 26, 639.  doi: 10.1055/s-00000083

    39. [39]

      Kim, J. Y.; Cho, S. H.; Joseph, J.; Chang, S. Angew. Chem., Int. Ed. 2010, 49, 9899.  doi: 10.1002/anie.v49.51

    40. [40]

      Li, Y. M.; Liu, J.; Xie, Y. S.; Zhang, R.; Jin, K.; Wang, X. N.; Duan, C. Y. Org. Biomol. Chem. 2012, 10, 3715.  doi: 10.1039/c2ob25425e

    41. [41]

      Cai, S. F.; He, W.; Li, Y. D.; Yu, X. F.; Zhang, Q.; Li, L. S. CN 102766108, 2012[Chem. Abstr. 2012, 157, 734720.]

    42. [42]

      Li, Y. M.; Xie, Y. S.; Zhang, R.; Jin, K.; Wang, X. N.; Duan, C. Y. J. Org. Chem. 2011, 76, 5444.  doi: 10.1021/jo200447x

    43. [43]

      Monguchi, D.; Fujiwara, T.; Furukawa, H.; Mori, A. Org. Lett. 2009, 11, 1607.  doi: 10.1021/ol900298e

    44. [44]

      Mitsuda, S.; Fujiwara, T.; Kimigafukuro, K.; Monguchi, D.; Mori, A. Tetrahedron 2012, 68, 3585.  doi: 10.1016/j.tet.2012.03.001

    45. [45]

      Pal, P.; Giri, A. K.; Singh, H.; Ghosh, S. C.; Panda, A. B. Chem. Asian J. 2014, 9, 2392.  doi: 10.1002/asia.201402057

    46. [46]

      Xie, Y. J.; Qian, B.; Xie, P.; Huang, H. M. Adv. Synth. Catal. 2013, 355, 1315.  doi: 10.1002/adsc.v355.7

    47. [47]

      Cao, K.; Wang, J. L.; Wang, L. H.; Li, Y. Y.; Yu, X. H.; Huang, Y. W.; Yang, J. X.; Chang, G. J. Synth. Commun. 2014, 44, 2848.  doi: 10.1080/00397911.2014.919402

    48. [48]

      Lamani, M.; Prabhu, K. R. J. Org. Chem. 2011, 76, 7938.  doi: 10.1021/jo201402a

    49. [49]

      Froehr, T.; Sindlinger, C. P.; Kloeckner, U.; Finkbeiner, P.; Nachtsheim, B. J. Org. Lett. 2011, 13, 3754.  doi: 10.1021/ol201439t

    50. [50]

      Wagh, Y. S.; Sawant, D. N.; Bhanage, B. M. Tetrahedron Lett. 2012, 53, 3482.  doi: 10.1016/j.tetlet.2012.04.117

    51. [51]

      Gao, W. J.; Li, W. C.; Zeng, C. C.; Tian, H. Y.; Hu, L. M.; Little, R. D. J. Org. Chem. 2014, 79, 9613.  doi: 10.1021/jo501736w

    52. [52]

      Joseph, J.; Kim, J. Y.; Chang, S. Chem. Eur. J. 2011, 17, 8294.  doi: 10.1002/chem.201100910

    53. [53]

      Wertz, S.; Kodama, S.; Studer, A. Angew. Chem., Int. Ed. 2011, 50, 11511.  doi: 10.1002/anie.v50.48

    54. [54]

      Wagh, Y. S.; Tiwari, N. J.; Bhanage, B. M. Tetrahedron Lett. 2013, 54, 1290.  doi: 10.1016/j.tetlet.2012.12.127

    55. [55]

      Yotphan, S.; Beukeaw, D.; Reutrakul, V. Synthesis 2013, 45, 0936.  doi: 10.1055/s-00000084

    56. [56]

      Xu, D. Q.; Wang, W. F.; Miao, C. X.; Zhang, Q. H.; Xia, C. G.; Sun, W. Green Chem. 2013, 15, 2975.  doi: 10.1039/c3gc41206g

    57. [57]

      Wang, X. E.; Xu, D. Q.; Miao, C. X.; Zhang, Q. H.; Sun, W. Org. Biomol. Chem. 2014, 12, 3108.  doi: 10.1039/c4ob00386a

    58. [58]

      Maity, S.; Zhu, M.; Shinabery, R. S.; Zheng, N. Angew. Chem., Int. Ed. 2012, 51, 222.  doi: 10.1002/anie.201106162

    59. [59]

      Maity, S.; Zheng, N. Angew. Chem., Int. Ed. 2012, 51, 9562.  doi: 10.1002/anie.v51.38

    60. [60]

      Allen, L. J.; Cabrera, P. J.; Lee, M.; Sanford, M. S. J. Am. Chem. Soc. 2014, 136, 5607.  doi: 10.1021/ja501906x

    61. [61]

      Rueping, M.; Zhu, S.; Koenigs, R. M. Chem. Commun. 2011, 47, 8679.  doi: 10.1039/c1cc12907d

    62. [62]

      Wang, J. D.; Liu, Y. X.; Xue, D.; Wang, C.; Xiao, J. L. Synlett 2014, 25, 2013.  doi: 10.1055/s-00000083

    63. [63]

      Guo, S. M.; Qian, B.; Xie, Y. J.; Xia, C. G.; Huang, H. M. Org. Lett. 2011, 13, 522.  doi: 10.1021/ol1030298

    64. [64]

      Yuan, J. W.; Jin, M.; Yin, Q. Y.; Mao, P.; Qu, L. B. Z. Naturforsch. 2016, 71b, 317.

    65. [65]

      Wang, S.; Wang, J.; Guo, R.; Wang, G.; Chen, S. Y.; Yu, X. Q. Tetrahedron Lett. 2013, 54, 6233.  doi: 10.1016/j.tetlet.2013.09.018

    66. [66]

      Cho, S. H.; Kim, J. Y.; Lee, S. Y.; Chang, S. Angew. Chem., Int. Ed. 2009, 48, 9127.  doi: 10.1002/anie.v48:48

    67. [67]

      Wang, J.; Hou, J. T.; Wen, J.; Zhang, J.; Yu, J. Q. Chem. Commun. 2011, 47, 3652.  doi: 10.1039/c0cc05811d

    68. [68]

      Wang, R.; Liu, H.; Yue, L.; Zhang, X. K.; Tan, Q. Y.; Pan, R. L. Tetrahedron Lett. 2014, 55, 2233.  doi: 10.1016/j.tetlet.2014.02.070

    69. [69]

      Kawano, T.; Hirano, K.; Satoh, T.; Miura, M. J. Am. Chem. Soc. 2010, 132, 6900.  doi: 10.1021/ja101939r

    70. [70]

      Chen, S. Y.; Zheng, K.; Chen, F. Tetrahedron Lett. 2012, 53, 6297.  doi: 10.1016/j.tetlet.2012.09.044

    71. [71]

      Yotphan, S.; Beukeaw, D.; Reutrakul, V. Tetrahedron 2013, 69, 6627.  doi: 10.1016/j.tet.2013.05.127

    72. [72]

      Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2011, 13, 2860.  doi: 10.1021/ol200855t

    73. [73]

      Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Synthesis 2012, 44, 1792.  doi: 10.1055/s-0031-1289715

    74. [74]

      Gilchrist, T. L.; John Harris, C.; King, F. D.; Peek, M. E. J. Chem. Soc., Perkin Trans. 1 1988, 2169.

    75. [75]

      Morofuji, T.; Shimizu, A.; Yoshida, J. Chem. Eur. J. 2015, 21, 3211.  doi: 10.1002/chem.v21.8

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    6. [6]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    7. [7]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    11. [11]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    12. [12]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    13. [13]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    14. [14]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    15. [15]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    16. [16]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    17. [17]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    19. [19]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    20. [20]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

Metrics
  • PDF Downloads(0)
  • Abstract views(1920)
  • HTML views(378)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return