Citation: Song Chuang, Mao Guoliang, Liu Zhenhua, Ning Yingnan, Jiang Tao. Advances in Mechanistic Research of Ethylene Selective Oligomeri-zation Catalyzed by Homogeneous Chromium-Based Catalysts[J]. Chinese Journal of Organic Chemistry, ;2016, 36(9): 2105-2120. doi: 10.6023/cjoc201602034 shu

Advances in Mechanistic Research of Ethylene Selective Oligomeri-zation Catalyzed by Homogeneous Chromium-Based Catalysts

  • Corresponding author: Mao Guoliang, maoguoliang@nepu.edu.cn
  • Received Date: 29 February 2016
    Revised Date: 21 April 2016

    Fund Project: Project supported by the National Natural Science Foundation of China 51534004the Program for New Century Excellent Talents in University NCET-07-0142Project supported by the National Natural Science Foundation of China U1362110

Figures(22)

  • Linear α-olefin is an important feed stock for chemical industry. Production of specific α-olefin through selective ethylene oligomerization catalyzed by homogeneous chromium-based catalysts is an important research on orientation under rapid development in recent years. The research of catalytic mechanism plays an important role in guiding the exploration of novel high-efficient catalysts. The application of methods such as labelled atom, organometallic precursor, EPR-XAS, density functional theory (DFT) calculation etc. in the research of reaction path and the metal oxidation state is introduced, with the latest achievement in the mechanistic research summarized. Research works carried out by various researchers are compared and discussed from methodology. New perspective on binuclear Cr metal ring mechanistic research is proposed and an outlook on the further research orientation is presented.
  • 加载中
    1. [1]

      Skupinska, J.Chem.Rev.1991, 91, 613.  doi: 10.1021/cr00004a007

    2. [2]

      Forestière A.; Olivier-Bourbigou H.; Saussine L.Oil Gas Sci.Technol.2009, 64, 649.  doi: 10.2516/ogst/2009027

    3. [3]

      Qian, B.Z.Petrochem.Ind.Technol.2011, 18, 58(in Chinese).

    4. [4]

      Jin, W.Petroleum.Knowl.2014, 4, 24(in Chinese).

    5. [5]

      Carter, A.; Cohen, S.A.; Cooley, N.A.; Murphy, A.; Scutt, J.; Wass, D.F.Chem.Commun.2002, 8, 858.

    6. [6]

      Commereuc, D.; Chauvin, Y.; Gaillard, J.; Leonard, J.; Andrews, J.Hydrocarbon Process.1984, 63, 118.

    7. [7]

      Al-Jarallah, A.M.; Anabtawi, J.A.; Siddiqui, M.A.B.; Aitani, A.M.; Al-Sa'doun, A.W.Catal.Today 1992, 14, 1.  doi: 10.1016/0920-5861(92)80128-A

    8. [8]

      Pillai, S.M.; Ravindranathan, M.; Sivaram, S.Chem.Rev.1986, 86, 353.  doi: 10.1021/cr00072a004

    9. [9]

      Al-Sherehy, F.A.Stud.Surf.Sci.Catal.1996, 100, 515.  doi: 10.1016/S0167-2991(96)80052-8

    10. [10]

      Van Leeuwen, P.W.; Clément, N.D.; Tschan, M.J.L.Coord.Chem.Rev.2011, 255, 1499.  doi: 10.1016/j.ccr.2010.10.009

    11. [11]

      Xu, J.Y.Pet.Process.Petrochem.2014, 45, 67(in Chinese).
       

    12. [12]

      McGuinness, D.S.Chem.Rev.2010, 111, 2321.

    13. [13]

      Agapie, T.Coord.Chem.Rev.2011, 255, 861.  doi: 10.1016/j.ccr.2010.11.035

    14. [14]

      Bryliakov, K.P.; Talsi, E.P.Coord.Chem.Rev.2012, 256, 2994.  doi: 10.1016/j.ccr.2012.06.023

    15. [15]

      Dixon, J.T.; Green, M.J.; Hess, F.M.; Morgan, D.H.J.Organomet.Chem.2004, 689, 3641.  doi: 10.1016/j.jorganchem.2004.06.008

    16. [16]

      Belov, G.P.Pet.Chem.2012, 52, 139.  doi: 10.1134/S0965544112030036

    17. [17]

      Suttil, J.A.; McGuinness, D.S.Organometallics 2012, 31, 7004.  doi: 10.1021/om3008508

    18. [18]

      Ziegler, K.; Martin, H.US 2943125, 1960[Chem.Abstr.1983, 54, 134637].

    19. [19]

      Belov, G.P.; Dzhabiev, T.S.; Kolesnikov, I.M.J.Mol.Catal.1982, 14, 105.  doi: 10.1016/0304-5102(82)80053-9

    20. [20]

      Robinson Jr, R.; McGuinness, D.S.; Yates, B.F.ACS Catal.2013, 3, 3006.  doi: 10.1021/cs4006875

    21. [21]

      Al-Sa'doun, A.W.Appl.Catal., A 1993, 105, 1.  doi: 10.1016/0926-860X(93)85131-8

    22. [22]

      McDermott, J.X.; White, J.F.; Whitesides, G.M.J.Am.Chem.Soc.1973, 95, 4451.  doi: 10.1021/ja00794a068

    23. [23]

      Manyik, R.M.; Walker, W.E.; Wilson, T.P.J.Catal.1977, 47, 197.  doi: 10.1016/0021-9517(77)90167-1

    24. [24]

      Pettijohn, T.M.; Reagen, W.K.; Martin, S.J.US 5331070, 1994[Chem.Abstr.1994, 122, 56808].

    25. [25]

      Reagen, W.K.; Pettijohn, T.M.; Freeman, J.W.; Benham, E.A.US 5786431, 1998[Chem.Abstr.1998, 115, 93172].

    26. [26]

      Freeman, J.W.; Buster, J.L.; Knudsen, R.D.US 5919996, 1999[Chem.Abstr.1999, 130, 95984].

    27. [27]

      Briggs, J.R.J.Chem.Soc., Chem.Commun.1989, 11, 674.

    28. [28]

      Emrich, R.; Heinemann, O.; Jolly, P.W., Krüger, C.; Verhovnik, G.P.Organometallics 1997, 16, 1511.  doi: 10.1021/om961044c

    29. [29]

      Liu, R.; Xiao, S.M.; Zhong, X.H.; Cao, Y.C.; Liang, S.B.; Liu, Z.Y.; Ye, X.F.; Shen, A.; Zhu, H.P.Chin.J.Org.Chem.2015, 35, 1861(in Chinese).  doi: 10.6023/cjoc201504009
       

    30. [30]

      Agapie, T.; Schofer, S.J.; Labinger, J.A.; Bercaw, J.E.J.Am.Chem.Soc.2004, 126, 1304.  doi: 10.1021/ja038968t

    31. [31]

      Agapie, T.; Labinger, J.A.; Bercaw, J.E.J.Am.Chem.Soc.2007, 129, 14281.  doi: 10.1021/ja073493h

    32. [32]

      Klemps, C.; Payet, E.; Magna, L.; Saussine, L.; Le Goff, X.F.; Le Floch, P.Chem.Eur.J.2009, 15, 8259.  doi: 10.1002/chem.v15:33

    33. [33]

      Yang, Y.; Liu, Z.; Zhong, L.; Qiu, P.Y.; Dong, Q.; Cheng, R.H.; Vanderbilt, J.; Liu, B.P.Organometallics 2011, 30, 5297.  doi: 10.1021/om200722r

    34. [34]

      Yu, Z.X.; Houk, K.N.Angew.Chem., Int.Ed.2003, 42, 808.  doi: 10.1002/anie.200390215

    35. [35]

      Qi, Y.; Dong, Q.; Zhong, L.; Liu, Z.; Qiu, P.; Cheng, R.H.; He, X.L.; Vanderbilt, J.; Liu, B.P.Organometallics 2010, 29, 1588.  doi: 10.1021/om900917k

    36. [36]

      Budzelaar, P.H.Can.J.Chem.2009, 87, 832.

    37. [37]

      Albahily, K.; Koç, E.; Al-Baldawi, D.; Savard, D.; Gambarotta, S.; Burchell, T.J.; Duchateau, R.Angew.Chem., Int.Ed.2008, 47, 5816.  doi: 10.1002/anie.v47:31

    38. [38]

      Bollmann, A.; Blann, K.; Dixon, J.T.; Hess, F.M.; Killian, E.; Maumela, H.; McGuinness, D.S.; Morgan, D.H.; Neveling, A.; Otto, S.; Overett, M.; Slawin, A.M.Z.; Wasserscheid, P.; Kuhlmann, S.J.Am.Chem.Soc.2004, 126, 14712.  doi: 10.1021/ja045602n

    39. [39]

      Overett, M.J.; Blann, K.; Bollmann, A.; Dixon, J.T.; Haasbroek, D.; Killian, E.; Maumela, H.; McGuinness, D.S.; Morgan, D.H.J.Am.Chem.Soc.2005, 127, 10723.  doi: 10.1021/ja052327b

    40. [40]

      Blok, A.N.; Budzelaar, P.H.; Gal, A.W.Organometallics 2003, 22, 2564.  doi: 10.1021/om030049o

    41. [41]

      Britovsek, G.J.; McGuinness, D.S.; Wierenga, T.S.; Young, C.T.ACS Catal.2015, 5, 4152.  doi: 10.1021/acscatal.5b00989

    42. [42]

      Young, J.F.; Yap, G.Theopold, K H.In INOR 554-Reactivity of Chromium (Ⅱ) Bimetallocycles and Their Role in Ethylene Trimerization, Abstracts of Papers of the 234th ACS National Meeting, American Chemical Society, America, 2007, p.234.

    43. [43]

      Peitz, S.; Aluri, B.R.; Peulecke, N.; Müller, B.H.; Wöhl, A.; Müller, W.; Al-Hazmi, M.H.; Mosa, F.M.; Rosenthal, U.Chem.Eur.J.2010, 16, 7670.  doi: 10.1002/chem.201000750

    44. [44]

      Breslow, D.S.; Newburg, N.R.J.Am.Chem.Soc.1957, 79, 5072.

    45. [45]

      Long, W.P.; Breslow, D.S.J.Am.Chem.Soc.1960, 82, 1953.  doi: 10.1021/ja01493a029

    46. [46]

      Lee, P.Y.; Liang, L.C.Inorg.Chem.2009, 48, 5480.  doi: 10.1021/ic802030d

    47. [47]

      Long, W.P.J.Am.Chem.Soc.1959, 81, 5312.  doi: 10.1021/ja01529a017

    48. [48]

      Chien, J.C.J.Am.Chem.Soc.1959, 81, 86.  doi: 10.1021/ja01510a019

    49. [49]

      Zefirova, A.K.; Shilov, A.E.Dokl.Akad.Nauk SSSR 1961, 136, 599.

    50. [50]

      Dyachkovskii, F.S.; Shilova, A.K.; Shilov, A.E.J.Polym.Sci., Part C:Polym.Symp.1967, 16, 2333.

    51. [51]

      Jabri, A.; Crewdson, P.; Gambarotta, S.; Korobkov, I.; Duchateau, R.Organometallics 2006, 25, 715.  doi: 10.1021/om050886l

    52. [52]

      McGuinness, D.S.; Wasserscheid, P.; Keim, W.; Morgan, D.; Dixon, J.T.; Bollmann, A.; Maumela, H.; Hess, F.; Englert, U.J.Am.Chem.Soc.2003, 125, 5272.  doi: 10.1021/ja034752f

    53. [53]

      McGuinness, D.S.; Brown, D.B.; Tooze, R.P.; Hess, F.M.; Dixon, J.T.; Slawin, A.M.Organometallics 2006, 25, 3605.  doi: 10.1021/om0601091

    54. [54]

      Temple, C.; Jabri, A.; Crewdson, P.; Gambarotta, S.; Korobkov, I.; Duchateau, R.Angew.Chem.2006, 118, 7208.  doi: 10.1002/(ISSN)1521-3757

    55. [55]

      Zhang, J.; Li, A.; Hor, T.A.Organometallics 2009, 28, 2935.  doi: 10.1021/om9002347

    56. [56]

      Yoshida, T.; Yamamoto, T.; Okada, H.; Murakita, H.US 0035029, 2002[Chem.Abstr.2002, 136, 249387].

    57. [57]

      McGuinness, D.S.; Overett, M.; Tooze, R.P.; Blann, K.; Dixon, J.T.; Slawin, A.M.Organometallics 2007, 26, 1108.  doi: 10.1021/om060906z

    58. [58]

      Deckers, P.J.; van der Linden, A.J.; Meetsma, A.; Hessen, B.Eur.J.Inorg.Chem.2000, 5, 929.

    59. [59]

      Jabri, A.; Mason, C.B.; Sim, Y.; Gambarotta, S.; Burchell, T.J.; Duchateau, R.Angew.Chem., Int.Ed.2008, 47, 9717.  doi: 10.1002/anie.v47:50

    60. [60]

      Vidyaratne, I.; Nikiforov, G.B.; Gorelsky, S.I.; Gambarotta, S.; Duchateau, R.; Korobkov, I.Angew.Chem., Int.Ed.2009, 48, 6552.  doi: 10.1002/anie.v48:35

    61. [61]

      Reagan, W.K.EP 0417477, 1991[Chem.Abstr.1991, 115, 93172].

    62. [62]

      Evans, D.F.J.Chem.Soc.1959, 2003.  doi: 10.1039/jr9590002003

    63. [63]

      Rucklidge, A.J.; McGuinness, D.S.; Tooze, R.P.; Slawin, A.M.; Pelletier, J.D.; Hanton, M.J.; Webb, P.B.Organometallics 2007, 26, 2782.  doi: 10.1021/om0701975

    64. [64]

      Brückner, A.; Jabor, J.K.; McConnell, A.E.; Webb, P.B.Organometallics 2008, 27, 3849.  doi: 10.1021/om800316m

    65. [65]

      Skobelev, I.Y.; Panchenko, V.N.; Lyakin, O.Y.; Bryliakov, K.P.; Zakharov, V.A.; Talsi, E.P.Organometallics 2010, 29, 2943.  doi: 10.1021/om100215t

    66. [66]

      Freeman, J.W.; Buster, J.L.; Knudsen, R.D.US 5856257, 1999[Chem.Abstr.1999, 130, 95984].

    67. [67]

      Rabeah, J.; Bauer, M.; Baumann, W.; McConnell, A.E.; Gabrielli, W.F.; Webb, P.B.; Selent, D.; Bruckner, A.ACS Catal.2012, 3, 95.

    68. [68]

      Weckhuysen, B.M.; Schoonheydt, R.A.; Jehng, J.M.; Wachs, I.E.; Cho, S.J.; Ryoo, R.; Kijlstra, S.; Poels, E.J.Chem.Soc., Faraday Trans.1995, 91, 3245.  doi: 10.1039/FT9959103245

    69. [69]

      Monillas, W.H.; Yap, G.; Theopold, K.H.Angew.Chem., Int.Ed.2007, 46, 6692.  doi: 10.1002/(ISSN)1521-3773

    70. [70]

      Poli, R.; Harvey, J.N.Chem.Soc.Rev.2003, 32, 1.  doi: 10.1039/b200675h

    71. [71]

      Köhn, R.D.Angew.Chem., Int.Ed.2008, 47, 245.  doi: 10.1002/(ISSN)1521-3773

    72. [72]

      Bhaduri, S.; Mukhopadhyay, S.; Kulkarni, S.A.J.Organomet.Chem.2009, 694, 1297.  doi: 10.1016/j.jorganchem.2008.12.012

    73. [73]

      Janse van Rensburg, W.; van den Berg, J.A.; Steynberg, P.J.Organometallics 2007, 26, 1000.  doi: 10.1021/om060890c

    74. [74]

      McGuinness, D.S.; Chan, B.; Britovsek, G.J.; Yates, B.F.Aust.J.Chem.2014, 67, 1481.  doi: 10.1071/CH14436

    75. [75]

      Tang, S.Y.; Liu, Z,; Zhan, X.W.; Cheng, R.H.; He, X.L.; Liu, B.P.J.Chem.Eng.2014, 65, 131(in Chinese).

    76. [76]

      Mason, M.R.; Smith, J.M.; Bott, S.G.; Barron, A.R.J.Am.Chem.Soc.1993, 115, 4971.  doi: 10.1021/ja00065a005

    77. [77]

      Harlan, C.J.; Mason, M.R.; Barron, A.R.Organometallics 1994, 13, 2957.  doi: 10.1021/om00020a011

    78. [78]

      Babushkin, D.E.; Semikolenova, N.V.; Panchenko, V.N.; Sobolev, A.P.; Zakharov, V.A.; Talsi, E.P.Macromol.Chem.Phys.1997, 198, 3845.  doi: 10.1002/macp.1997.021981206

    79. [79]

      Zakharov, I.I.; Zakharov, V.A.Macromol.Theory Simul.2001, 10, 108.  doi: 10.1002/(ISSN)1521-3919

    80. [80]

      Pasha, F.A.; Basset, J.M.; Toulhoat, H.; de Bruin, T.Organometallics 2015, 34, 426.  doi: 10.1021/om5008874

    81. [81]

      Grubbs, R.H.; Coates, G.W.Acc.Chem.Res.1996, 29, 85.  doi: 10.1021/ar9501683

    82. [82]

      Harvey, J.N.; Poli, R.; Smith, K.M.Coord.Chem.Rev.2003, 238, 347.

    83. [83]

      Salomon, O.; Reiher, M.; Hess, B.A.J.Chem.Phys.2002, 117, 4729.  doi: 10.1063/1.1493179

    84. [84]

      Reiher, M.; Salomon, O.; Hess, B.A.Theor.Chim.Acta 2001, 107, 48.  doi: 10.1007/s00214-001-0300-3

    85. [85]

      Tomov, A.K.; Chirinos, J.J.; Jones, D.J.; Long, R.J.; Gibson, V.C.J.Am.Chem.Soc.2005, 127, 10166.  doi: 10.1021/ja051523f

    86. [86]

      Tomov, A.K.; Chirinos, J.J.; Long, R.J.; Gibson, V.C.; Elsegood, M.R.J.Am.Chem.Soc.2006, 128, 7704.  doi: 10.1021/ja0615369

    87. [87]

      Blann, K.; Bollmann, A.; de Bod, H.; Dixon, J.T.; Killian, E.; Nongodlwana, P.; Maumela, M.C.; Maumela, H.; McConnell, A.E.; Morgan, D.H.; Overett, M.J.; Prétoriusa, M.; Kuhlmannb, S.; Wasserscheidb, P.J.Catal.2007, 249, 244.  doi: 10.1016/j.jcat.2007.04.009

    88. [88]

      Overett, M.J.; Blann, K.; Bollmann, A.; de Villiers, R.; Dixon, J.T.; Killian, E.; Maumela, M.C.; Maumela, H.McGuineess, D.S.; Morgan, D.H.; Rucklidge, A.; Slawin, A.M.Z.J.Mol.Catal.A:Chem.2008, 283, 114.  doi: 10.1016/j.molcata.2007.11.036

    89. [89]

      Jiang, T.; Liu, X.Y.; Ning, Y.N.; Chen, H.X.; Luo, M.J.; Wang, L.B.; Huang, Z.J.Catal.Commun.2007, 8, 1145.  doi: 10.1016/j.catcom.2006.10.032

    90. [90]

      McGuinness, D.S.; Rucklidge, A.J.; Tooze, R.P.; Slawin, A.M.Organometallics 2007, 26, 2561.  doi: 10.1021/om070029c

    91. [91]

      Chen, H.X.; Liu, X.Y.; Hu, W.B.; Ning, Y.N.; Jiang, T.J.Mol.Catal.A:Chem.2007, 270, 273.  doi: 10.1016/j.molcata.2007.02.013

    92. [92]

      Kuhlmann, S.; Blann, K.; Bollmann, A.; Dixon, J.T.; Killian, E.; Maumela, M.C.; Maumela, H.; Morgan, D.H.; Prétoriusb, M.; Taccardia, N.; Wasserscheid, P.J.Catal.2007, 245, 279.  doi: 10.1016/j.jcat.2006.10.020

    93. [93]

      Jiang, T.; Ning, Y.N.; Zhang, B.J.; Li, J.Z.; Wang, G.; Yi, J.J.; Huang, Q.J.Mol.Catal.A:Chem.2006, 259, 161.  doi: 10.1016/j.molcata.2006.06.026

    94. [94]

      Killian, E.; Blann, K.; Bollmann, A.; Dixon, J.T.; Kuhlmann, S.; Maumela, M.C.; Maumela, H.; Morgan, D.H.; Nongodlwanaa, P.; Overetta, M.J.; Pretoriusa, M.; Höfenerb, K.; Wasserscheidb, P.J.Mol.Catal.A:Chem.2007, 270, 214.  doi: 10.1016/j.molcata.2007.01.046

    95. [95]

      Jiang, T.; Zhang, S.; Jiang, X.L.; Yang, C.F.; Niu, B.; Ning, Y.N.J.Mol.Catal.A:Chem.2008, 279, 90.  doi: 10.1016/j.molcata.2007.10.009

    96. [96]

      Kuhlmann, S.; Dixon, J.T.; Haumann, M.; Morgan, D.H.; Ofili, J.; Spuhl, O.; Taccardi, N.; Wasserscheid, P.Adv.Synth.Catal.2006, 348, 1200.  doi: 10.1002/(ISSN)1615-4169

    97. [97]

      Overett, M.J.; Blann, K.; Bollmann, A.; Dixon, J.T.; Hess, F.; Killian, E.; Maumela, H.; Morgan, D.H.; Neveling, A.; Otto S.Chem.Commun.2005, 5, 622.

    98. [98]

      Mao, G.L.; Ning, Y.N.; Hu, W.B.; Li, S.M.; Song, X.F.; Niu, B.; Jiang, T.Chin.Sci.Bull.2008, 53, 3511.

    99. [99]

      Aluri, B.R.; Peulecke, N.; Müller, B.H.; Peitz, S.; Spannenberg, A.; Hapke, M.; Rosenthal, U.Organometallics 2010, 29, 226.  doi: 10.1021/om900925b

  • 加载中
    1. [1]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    2. [2]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    5. [5]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    6. [6]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    7. [7]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    8. [8]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    9. [9]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    10. [10]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    11. [11]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    12. [12]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    13. [13]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    14. [14]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    15. [15]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    18. [18]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    19. [19]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

Metrics
  • PDF Downloads(0)
  • Abstract views(2600)
  • HTML views(730)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return