Citation: Cao Jingsi, Chen Feiwu. Theoretical Study on the Correlation of the Experimental Nucleophilic and Electrophilic Reaction Rates of Aromatic Compounds with the Prediction Results of Theoretical Methods[J]. Chinese Journal of Organic Chemistry, ;2016, 36(10): 2463-2471. doi: 10.6023/cjoc201602026 shu

Theoretical Study on the Correlation of the Experimental Nucleophilic and Electrophilic Reaction Rates of Aromatic Compounds with the Prediction Results of Theoretical Methods

  • Corresponding author: Chen Feiwu, chenfeiwu@ustb.edu.cn
  • Received Date: 26 February 2016
    Revised Date: 12 May 2016

    Fund Project: Project supported by the National Natural Science Foundation of China Nos.21173020,21473008

Figures(9)

  • Natural population analysis (NPA) charge, Hirshfeld charge, electrostatic potential, average local ionization energy, orbital composition of lowest unoccupied molecular orbital (LUMO), condensed Fukui function and condensed dual descriptor were exploited to predict the reaction active sites of nucleophilic and electrophilic reactions of aromatic compounds. It was found that the predicted reaction sites of these methods were all in consistent with the experimental results. It was also found that the correlations of the prediction results of theoretical methods reflecting local hardness such as Hirshfeld charges and electrostatic potential with the experimental reaction rate were excellent no matter the reactions of aromatic compounds are nucleophilic or electrophilic. However, the prediction results of theoretical methods reflecting local softness such as the condensed Fukui function and the condensed dual descriptor were in poor correlation with the experimental reaction rates as unexpected.
  • 加载中
    1. [1]

    2. [2]

       

    3. [3]

       

    4. [4]

      Esteves, P. M.; Carneiro, J. W. de M.; Cardoso, S. P.; Barbosa, A. G. H.; Laali, K. K.; Rasul, G.; Prakash, G. K. S.; Oláh, G. A. J. Am. Chem. Soc. 2003, 125, 4836. 

    5. [5]

      Hänggi, P.; Talkner, P.; Borkovec, M. Rev. Mod. Phys. 1990, 62, 251. 

    6. [6]

      Zhang, J. Z. H. Theory and Application of Quantum Molecular Dynamics, World Scientific, Singapore, 1999. 

    7. [7]

       

    8. [8]

      Murray, J. S.; Politzer, P. WIREs Comput. Mol. Sci. 2011, 1, 153. 

    9. [9]

       

    10. [10]

      Lu, T.; Chen, F. W. J. Mol. Model 2013, 19, 5387.

    11. [11]

    12. [12]

      Liu, S. B.; Rong, C.; Lu, T. J. Phys. Chem. A 2014, 118, 3698.

    13. [13]

       

    14. [14]

      Wu, W. J.; Wu, Z. M.; Rong, C. Y.; Lu, T.; Huang, Y.; Liu, S. B. J. Phys. Chem. A 2015, 119, 8216.

    15. [15]

      Wu, Z. M.; Rong, C. Y.; Lu, T.; Ayer, P. W.; Liu, S. B. Phys. Chem. Chem. Phys. 2015, 17, 27052.

    16. [16]

      Liu, S. B. Acta Phys.-Chim. Sin. 2016, 32, 98.

    17. [17]

       

    18. [18]

      Cao, J. S.; Ren, Q.; Chen, F. W.; Lu, T. Sci. China Chem. 2015, 58, 1845. 

    19. [19]

      Ammer, J.; Nolte, C.; Mayr, H. J. Am. Chem. Soc. 2012, 134, 13902.

    20. [20]

      Horn, M.; Schappele, L. H.; Lang-Wittkowski, G.; Mayr, H.; Ofial, A. R. Chem.-Eur. J. 2013, 19, 249.

    21. [21]

      Shi, L.; Chu, Y.; Knochel, P.; Mayr, H. Angew. Chem., Int. Ed. 2008, 47, 202. 

    22. [22]

      March, J. Advanced Organic Chemistry:Reactions, Mechanisms and Structure, Vol. 4, Wiley-Interscience Publication, United States of America, 1992, pp. 505~510.

    23. [23]

      Lakhdar, S.; Westermaier, M.; Terrier, F.; Goumont, R.; Boubaker, T.; Ofial, A. R.; Mayr, H. J. Org. Chem. 2006, 71, 9088. 

    24. [24]

      Westermaier, M.; Mayr, H. Org. Lett. 2006, 8, 4791. 

    25. [25]

      Kuivila, H. G.; Hendrickson, A. R. J. Am. Chem. Soc. 1952, 74, 5068. 

    26. [26]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.

    27. [27]

      Axel, D.; Becke J. Chem. Phys. 1993, 98, 1372.

    28. [28]

      Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213. 

    29. [29]

      Lu, T.; Chen, F. W. J. Comput. Chem. 2012, 33, 580. 

    30. [30]

      Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129.

    31. [31]

      Alan, R. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83(2), 15.

    32. [32]

      Glendening, E. D.; Landis, C. R.; Weinhold, F. WIREs Comput. Mol. Sci. 2012, 2, 1. 

    33. [33]

      Nalewajski; Parr, R. F. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 8879. 

    34. [34]

      Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules, Springer, Netherlands, 1980.

    35. [35]

      Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 1978, 68, 3801. 

    36. [36]

      Liu, S. B. Acta Phys.-Chim. Sin. 2009, 25, 590. 

    37. [37]

      Geerlings, P.; Proft, De F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. 

    38. [38]

      Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708. 

    39. [39]

      Jin, J. L.; Li, H. B.; Lu, T.; Duan, Y. A.; Geng, Y.; Wu, Y.; Su, Z. M. J. Mol. Model. 2013, 19, 3437. 

    40. [40]

      Chattaraj, P. K.; Maiti, B.; Sarkar, U. J. Phys. Chem. A 2003, 107, 4973. 

    41. [41]

      Oláh, J.; Van Alsenoy, C.; Sannigrahi, A. B. J. Phys. Chem. A 2002, 106, 3885.

    42. [42]

       

    43. [43]

      Politzer, P.; Murray, J. S. In Reviews in Computational Chemistry, Vol. 2, Eds.:Lipkowitz, K. B.; Boyd, D. B., Wiley, New York, 1991, p. 273.

    44. [44]

      Politzer, P.; Murray, J. S. In Chemical Reactivity Theory:A Density Functional View, Ed.:Chattaraj, P. K., CRC Press, London, 2009, p. 243.

    45. [45]

      Geerlings, P.; Langenaeker, W.; Proft, D. F.; Baeten, A. Theor. Comput. Chem. 1996, 3, 587.

    46. [46]

      Politzer, P.; Murray, J. S.; Concha, M. C. Int. J. Quantum Chem. 2002, 88, 19. 

    47. [47]

      Politzer, P.; Laurence, P. R.; Jayasuriya, K. Environ. Health Perspect. 1985, 61, 191. 

    48. [48]

      Sjoberg, P.; Politzer, P. J. Phys. Chem. 1990, 94, 3959. 

    49. [49]

      Bader, R. F. W.; Carroll, M. T.; Cheeseman, J. R.; Chang, C. J. Am. Chem. Soc. 1987, 109, 7968. 

    50. [50]

      Lu, T.; Chen, F. W. J. Mol. Graphics Modell. 2012, 38, 314.

    51. [51]

      Murray, J. S.; Peralta-Inga, Z.; Politzer, P.; Ekanayake, K.; LeBreton, P. Int. J. Quantum Chem. 2001, 83, 245. 

    52. [52]

      Sjoberg, P.; Murray, J. S.; Brinck, T.; Politzer, P. Can. J. Chem. 1990, 68, 1440. 

    53. [53]

      Politzer, P.; Murray, J. S. In Theoretical Aspects of Chemical Reactivity, Ed.:Toro-Labbé, A., Elsevier, Amsterdam, 2007, p. 119.

    54. [54]

      Fukui, K. Theory of Orientation and Stereoselection, Springer, Berlin, 2013.

    55. [55]

      Fukui, K.; Yonezawa, T.; Shingu, H. J. Chem. Phys. 1952, 20, 722.

  • 加载中
    1. [1]

      Yuan Zhuang Wenhui Li Jie Li . Curriculum Reform of “Chemical Composition Analysis of Materials” under Background of First-Class Discipline Construction. University Chemistry, 2025, 40(5): 283-290. doi: 10.12461/PKU.DXHX202407070

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    4. [4]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    5. [5]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    6. [6]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    8. [8]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    9. [9]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    10. [10]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    11. [11]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    12. [12]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Wenhui Li Changshuo Zhu Xinyu Cui Chenfei Zhao Lina Qiu Yan Li Chuandong Wu Min Yang Yuan Zhuang . Visual Determination of Acid-Base Titration Endpoints Using Smartphone APP-Based Analysis. University Chemistry, 2025, 40(7): 328-335. doi: 10.12461/PKU.DXHX202409062

    14. [14]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    15. [15]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    16. [16]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    17. [17]

      Xuefei Zhao Xuhong Hu Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008

    18. [18]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    19. [19]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    20. [20]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

Metrics
  • PDF Downloads(0)
  • Abstract views(6950)
  • HTML views(1669)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return