Citation: Pan Lingxiang, Luo Wenwen, Chen Ming, Liu Junkai, Xu Lu, Hu Rongrong, Zhao Zujin, Qin Anjun, Tang BenZhong. Tetraphenylpyrazine-Based Luminogens with Aggregation-Enhanced Emission Characteristics: Preparation and Property[J]. Chinese Journal of Organic Chemistry, ;2016, 36(6): 1316-1324. doi: 10.6023/cjoc201602020 shu

Tetraphenylpyrazine-Based Luminogens with Aggregation-Enhanced Emission Characteristics: Preparation and Property

  • Corresponding author: Qin Anjun, msqinaj@scut.edu.cn Tang BenZhong, tangbenz@ust.hk
  • Received Date: 22 February 2016
    Revised Date: 3 April 2016

    Fund Project: Project supported by the National Natural Science Foundation of China No.21525417and the National Program for Support of Top-Notch Young Professionals and the Guangdong Innovative Research Team Program No.201101C0105067115the National Key Basic Research Program of China (973 Program) No.2013CB834702

Figures(6)

  • The research on aggregation-induced emission (AIE) has been a hot topic in the fields of photo-physics and luminescent materials. Design and synthesis of new AIE-active luminogens (AIEgens) will further promote the development of this area. Based on our developed new AIEgen of tetraphenylpyrazine (TPP), in this paper, we further enriched its family by covalently attaching thiophene unit on TPP core, and prepared three AIEgens of TPP-T, TPP-2T and T-TPP-T. Their structure-property relationship was studied in detail. The results showed that TPP-T, TPP-2T and T-TPP-T feature the aggregation-enhanced emission (AEE) characteristics. Their powders emit at 418, 437 and 436 nm with absolute fluorescence quantum yields of 26.8, 29.0 and 30.9%, respectively, which makes them promising to be used as emitting layer in fabrication of organic light-emitting diodes in combination with their excellent thermal stability.
  • 加载中
    1. [1]

      Chen, H. C.; Ching, K. C.; Fang, M. H.; Ching, F. S.; Pi, T. C.; Chin, H. L. Adv. Funct. Mater. 2009, 19, 560. (b) Lukas, Z.; Volker, E.; Ralph, R.; Klaus, M. Org. Lett. 2013, 15, 804. (c) Jon, P. A.; Bambi, L. R.; Kristin, B.; John, G. W. Nano. Lett. 2010, 10, 788. (d) You, S. S.; Cai, Q.; Zheng, Y.; He, B. C.; Shen, J.; Yang, W. T.; Yin, M. Z. ACS Appl. Mater. Interfaces 2014, 6, 16327. (e) Leung, C. W. T.; Hong, Y. N.; Chen, S. J.; Zhao, E. G.; Lam, J. W. Y.; Tang. B. Z. J. Am. Chem. Soc. 2013, 135, 62. (f) Chen, S. J.; Hong, Y. N.; Liu, Y.; Liu, J. Z.; Leung, C. W. T.; Li, M.; Kwok, R. T. K.; Zhao, E. G.; Lam, J. W. Y.; Yu, Y.; Tang, B. Z. J. Am. Chem. Soc. 2013, 135, 4926. (g) Wang, Z. K.; Chen, S. J.; Lam, J. W. Y.; Qin, W.; Kwok, R. T. K.; Xie, N.; Hu, Q. L.; Tang, B. Z. J. Am. Chem. Soc. 2013, 135 (22), 8238. (h) Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Acc. Chem. Res. 2013, 46 (11), 2441. 

    2. [2]

      Jenekhe, S. A.; Osaheni, J. A. Science 1994, 265, 765. 

    3. [3]

      Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos, S. D. A.; Brédas, J. L.; Lögdlund, M.; Salaneck, W. R. Nature 1999, 397, 121. 

    4. [4]

      Chen, C. T. Chem. Mater. 2004, 16, 4389. 

    5. [5]

      Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z. Chem. Commun. 2001, 1740.

    6. [6]

      Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115(21), 11718. (b) Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Chem. Soc. Rev. 2011, 40, 5361. (c) Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Chem. Commun. 2009, 4332. (d) Li, Q.; Li, Z. Sci. China Chem. 2015, 58, 1800. (e) Quan, C. Y.; Nie, H.; Hu, R. R.; Qin, A. J.; Zhao, Z. J.; Tang, B. Z. Chin. J. Chem. 2015, 33, 842. 

    7. [7]

      Chen, L.; Jiang, Y. B.; Nie, H.; Lu, P.; Sung, H. H. Y.; Williams, I. D.; Kwok, H. S.; Huang, F.; Qin, A. J.; Zhao, Z. J.; Tang, B. Z. Adv. Funct. Mater. 2014, 24, 3621. (b) Scalise, R. E.; Caradonna, P. A.; Tracy, H. J.; Mullin, J. L.; Keirstead, A. E. J. Inorg. Organomet. Polym. Mater. 2014, 24, 431. (c) Mei, J.; Wang, J.; Sun, J. Z.; Zhao, H.; Yuan, W. Z.; Deng, C. M.; Chen, S. M.; Sung, H. H. Y.; Lu, P.; Qin, A. J.; Kwok, H. S.; Ma, Y. G.; Williams, I. D.; Tang, B. Z. Chem. Sci. 2012, 3, 549. (d) Liu, J.; Lam, J. W. Y.; Tang, B. Z. J. Inorg. Organomet. Polym. Mater. 2009, 19, 249. 

    8. [8]

      Zhao, Z.; Lam, J. W. Y.; Tang, B. Z. J. Mater. Chem. 2012, 22, 23726. (b) Huang, J.; Sun, N.; Dong, Y.; Tang, R.; Lu, P.; Cai, P.; Li, Q.; Ma, D.; Qin, J.; Li, Z. Adv. Funct. Mater. 2013, 23, 2329. (c) Gu, X. G.; Yao, J. J.; Zhang, G. X.; Zhang, C.; Yan, Y. L.; Zhao, Y. S.; Zhang, D. Q. Chem. Asian J. 2013, 8, 2362. (d) Zhang, X.; Chi, Z.; Zhou, X.; Liu, S.; Zhang, Y.; Xu, J. J. Phys. Chem. C 2012, 116, 23629. (e) Ma, J.; Lin, T. T.; Pan, X.; Wang, W. Z. Chem. Mater. 2014, 26, 4221. (f) Misra, R.; Jadhav, T.; Dhokale, B.; Mobin, S. M. Chem. Commun. 2014, 50, 9067. (g) Ghosh, K. R.; Saha, S. K.; Wang, Z. Y. Polym. Chem. 2014, 5, 5638. (h) Dong, W.; Fei, T.; Palma-Cando, A.; Scherf, U. Polym. Chem. 2014, 5, 4048. 

    9. [9]

      Xu, B.; Zhang, J. B.; Ma, S. Q.; Chen, J. L.; Dong, Y. J.; Tian, W. J. Prog. Chem. 2013, 25, 1079. (b) Zhang, X. Q.; Chi, Z. G.; Xu, B. J.; Jiang, L.; Zhou, X.; Zhang, Y.; Liu, S. W.; Xu, J. R. Chem. Commun. 2012, 48, 10895. (c) He, J. T.; Xu, B.; Chen, F. P.; Xia, H. J.; Li, K. P.; Ye, L.; Tian, W. J. J. Phys. Chem. C 2009, 113, 9892.

    10. [10]

      Yang, Z.; Chi, Z,; Yu, T.; Zhang, X.; Chen, M.; Xu, B.; Liu, S.; Zhang, Y.; Xu, J. J. Mater. Chem. 2009, 19, 5541. (b) Zhang, X.; Yang, Z.; Chi, Z,.; Chen, M.; Xu, B.; Wang, C.; Liu, S.; Zhang, Y.; Xu, J. J. Mater. Chem. 2010, 20, 292. (c) Yang, Z.; Chi, Z.; Xu, B.; Li, H.; Zhang, X.; Li, X.; Liu, S.; Zhang, Y.; Xu, J. J. Mater. Chem. 2010, 20, 7352. (d) Zhang, X.; Chi, Z.; Li, H.; Xu, B.; Li, X.; Liu, S.; Zhang, Y.; Xu, J. J. Mater. Chem. 2011, 21, 1788. (e) Zhang, X.; Chi, Z.; Xu, B.; Chen, C.; Zhou, X.; Zhang, Y.; Liu, S.; Xu, J. J. Mater. Chem. 2012, 22, 18505. (f) Li, H.; Chi, Z.; Zhang, X.; Xu, B.; Liu, S.; Zhang, Y.; Xu, J. Chem. Commun. 2011, 47, 11273. (g) Li, H.; Zhang, X.; Chi, Z.; Xu, B.; Zhou, W.; Liu, S.; Zhang, Y.; Xu, J. Org. Lett. 2011, 4, 556. 

    11. [11]

      Chen, J. W.; Xu, B.; Ouyang, X. Y.; Tang, B. Z.; Cao, Y. J. Phys. Chem. A 2004, 108, 7522. (b) Han, T.; Zhang, Y. J.; Feng, X.; Lin, Z. G.; Tong, B.; Shi, J. B.; Zhi, J. G.; Dong, Y. P. Chem. Commun. 2013, 49, 7049. (c) Guo, Y. X.; Feng, X.; Han, T. Y.; Wang, S.; Lin, Z. G.; Dong, Y. P.; Wang, B. J. Am. Chem. Soc. 2014, 136, 15485. 

    12. [12]

      Chen, M.; Li, L. Z.; Nie, H.; Tong, J. Q.; Yan, L. L.; Xu, B.; Sun, J. Z.; Tian, W. J.; Zhao, Z. J.; Qin, A. J.; Tang, B. Z. Chem. Sci. 2015, 6, 1932. 

    13. [13]

      Chen, M.; Nie, H.; Song, B.; Li, L. Z.; Sun, J. Z.; Qin, A. J.; Tang, B. Z. J. Mater. Chem. C 2016, 4, 2901. 

    14. [14]

      Dong, Y. Q.; Lam, J. W. Y.; Qin, A. J.; Sun, J. X.; Liu, J. Z.; Li, Z.; Sun, J. Z.; Sung, H. H. Y.; Williams, I. D.; Kwokc, H. S.; Tang, B. Z. Chem. Commun. 2007, 3255.

    15. [15]

      Qin, A. J.; Lam, J. W. Y.; Mahtab, F.; Jim, C. K. W.; Tang, L.; Sun J. Z.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z. Appl. Phys. Lett. 2009, 94, 253308. 

    16. [16]

      Nie, H.; Chen, B.; Quan, C. Y.; Zhou, J.; Qiu, H. Y.; Hu, R. R.; Su, S. J.; Qin, A. J.; Zhao, Z. J.; Tang B. Z. Chem. Eur. J. 2015, 21, 8137.

    17. [17]

      Mohamad-Ali, T.; Freédeéric, D.; Bernadette, G.; Jean-Louis, C.; Didier, G.; Fabrice, M. S.; Jean-Pierre, F.; Jacques, L. Macromolecules 2013, 46, 736.

    18. [18]

      Marques, M. V.; Ruthner, M. M.; Fontoura, L. A. M.; Russowsky, D. J. Braz. Chem. Soc. 2012, 23, 171. 

    19. [19]

  • 加载中
    1. [1]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    2. [2]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    3. [3]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    4. [4]

      Haiying Jiang Liuhong Song Yangyang Cheng Kefen Yue Mingli Peng Huilin Guo . Ph―C≡C―Cu2.5的力致变色现象探究——推荐一个物理化学实验. University Chemistry, 2025, 40(8): 249-254. doi: 10.12461/PKU.DXHX202410003

    5. [5]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    8. [8]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    9. [9]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    10. [10]

      Zongpei Zhang Yanyang Li Yanan Si Kai Li Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041

    11. [11]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    12. [12]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    13. [13]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    14. [14]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    15. [15]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    16. [16]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    17. [17]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    18. [18]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    19. [19]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    20. [20]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

Metrics
  • PDF Downloads(0)
  • Abstract views(1750)
  • HTML views(473)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return