Citation: Zhang Mingdi, Chen Bin, Ge Chen, Liu Renrong, Gao Jianrong, Jia Yixia. Nickel-Catalyzed Addition and Coupling Reaction of Aryl Triflates to Aldehydes[J]. Chinese Journal of Organic Chemistry, ;2016, 36(7): 1636-1642. doi: 10.6023/cjoc201602007 shu

Nickel-Catalyzed Addition and Coupling Reaction of Aryl Triflates to Aldehydes

  • Corresponding author: Jia Yixia, yxjia@zjut.edu.cn
  • Received Date: 3 February 2016
    Revised Date: 9 March 2016

    Fund Project: the Program for New Century Excellent Talents in University No.NCET-12-1086the National Natural Science Foundation of China No. 21372202

Figures(1)

  • The nickel-catalyzed addition and coupling reaction between aryl triflates and aldehydes were developed. The reactions proceed smoothly in the presence of zinc powder with the use of 10 mol% Ni(dppe)Br2 as a catalyst. A range of aryl methanols and aryl ketones were isolated respectively in moderate to good yields in MeOH and THF solvent via direct addition or coupling reactions. Aliphatic and aromatic aldehydes were involved in this reaction, showing a broad substrate scope.
  • 加载中
    1. [1]

      Okude, Y.; Hirano, S.; Hiyama, T.; Nozaki, H. J. Am. Chem. Soc. 1977, 99, 3179. (b) Jin, H.; Uenishi, J.; Christ, W. J.; Kishi, Y. J. Am. Chem. Soc. 1986, 108, 5644. (c) Takai, K.; Tagashira, M.; Kuroda, T.; Oshima, K.; Utimoto, K.; Nozaki, H. J. Am. Chem. Soc. 1986, 108, 6048. (d) Fürstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 2533. (e) Fürstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 12349. 

    2. [2]

      Quan, L.-G.; Lamrani, M.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 4827. (b) Pletnev, A. A.; Larock, R. C. J. Org. Chem. 2002, 67, 9428. (c) Solé, D.; Vallverdú, L.; Solans, X.; Font-Bardía, M.; Bonjoch, J. J. Am. Chem. Soc. 2003, 125, 1587. (d) Cacchi, S.; Fabrizi, G.; Gavazza, F.; Goggiamani, A. Org. Lett. 2003, 289. (e) Solé, D.; Serrano, O. Angew. Chem., Int. Ed. 2007, 46, 7270. (f) Solé, D.; Serrano, O. J. Org. Chem. 2008, 73, 9372. (g) Zhao, Y.-B.; Mariampillai, B.; Candito, D. A.; Laleu, B.; Li, M.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 1849. 

    3. [3]

      Majumdar, K. K.; Cheng, C.-H. Org. Lett. 2000, 2295. (b) Rayabarapu, D. K.; Chang, H.-T.; Cheng, C.-H. Chem. Eur. J. 2004, 10, 2991. (c) Hsieh, J. C.; Cheng, C.-H. Chem. Commun. 2005, 4554. (d) Hu, J.-X.; Wu, H.; Li, C.-Y.; Sheng, W.-J.; Jia, Y.-X.; Gao, J.-R. Chem. Eur. J. 2011, 17, 5234. (e) Yin, H.; Zhao, C.; You, H.; Lin, K.; Gong, H. Chem. Commun. 2012, 7034. (f) Wu, F.; Lu, W.; Qian, Q.; Ren, Q.; Gong, H. Org. Lett. 2012, 14, 3044. (g) He, J.-Q.; Chen, C.; Yu, W.-B.; Liu, R.-R.; Xu, M.; Li, Y.-J.; Gao, J.-R.; Jia, Y.-X. Tetrahedron Lett. 2014, 55, 2805. (h) Zhao, C.; Jia, X.; Wang, X.; Gong, H. J. Am. Chem. Soc. 2014, 136, 17645.

    4. [4]

      Correa, A.; Martin, R. J. Am. Chem. Soc. 2014, 136, 7253. 

    5. [5]

      Huang, Y.-C.; Majumdar, K. K.; Cheng, C.-H. J. Org. Chem. 2002, 67, 1682.

    6. [6]

      Kuriyama, M.; Shimazawa, R.; Enomoto, T.; Shirai, R. J. Org. Chem. 2008, 73, 6939. (b) Infante, R.; Nieto, J.; Andrés, C. Org. Biomol. Chem. 2011, 9, 6691. (c) Kuriyama, M.; Ishiyama, N.; Shimazawa, R.; Onomura, O. Tetrahedron 2010, 66, 6814. (d) Yamamoto, T.; Ohta, T.; Ito, Y. Org. Lett. 2005, 7, 4153. (e) DeBerardinis, A. M.; Turlington, M.; Pu, L. Org. Lett. 2008, 10, 2709. (f) Yamamoto, T.; Furusawa, T.; Zhumagazin, A.; Yamakawa, T.; Oe, Y.; Ohta, T. Tetrahedron 2015, 71, 19. (g) Hirose, T.; Sugawara, K.; Kodama, K. J. Org. Chem. 2011, 76, 5413. (h) Majumdar, K. K.; Cheng, C.-H. Org. Lett. 2000, 2, 2295. 

    7. [7]

      Rao, M. L. N.; Venkatesh, V. Banerjee, D. Tetrahedron 2007, 63, 12917. (b) Silbestri, G. F.; Masson, R. B.; Lockhart, M. T.; Chopa, A. B. J. Organomet. Chem. 2006, 619, 1520. (c) Andrus, M. B.; Ma, Y.; Zang, Y.; Songa, C. Tetrahedron Lett. 2002, 43, 9137. (d) Ushijima, S.; Dohi, S.; Moriyama, K.; Togo, H. Tetrahedron 2012, 68, 1436. (e) Baghos, V. B.; Doss, S. H.; Eskander, E. F. Org. Prep. Proced. Int. 1993, 25, 301. (f) Meng, G.; Szostak, M. Org. Lett. 2015, 17, 4364. (g) Huang, Y. C.; Majumdar, K. K.; Cheng, C.-H. J. Org. Chem. 2002, 67, 1682. 

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    4. [4]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    5. [5]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    6. [6]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    7. [7]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    8. [8]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    11. [11]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    13. [13]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    14. [14]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    15. [15]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    16. [16]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    17. [17]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    18. [18]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    19. [19]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    20. [20]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

Metrics
  • PDF Downloads(0)
  • Abstract views(1363)
  • HTML views(261)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return