Citation: Bi Cheng, Xiong Xingquan, Shi Lin, Xiao Shangyun. Highly Efficient and Green Synthesis of Propargylic Amines Catalyzed by Waste Crab Shell Powders-Supported CuI Catalyst[J]. Chinese Journal of Organic Chemistry, ;2016, 36(8): 1847-1853. doi: 10.6023/cjoc201601021 shu

Highly Efficient and Green Synthesis of Propargylic Amines Catalyzed by Waste Crab Shell Powders-Supported CuI Catalyst

  • Corresponding author: Xiong Xingquan, xxqluli@hqu.edu.cn
  • Received Date: 18 January 2016
    Revised Date: 10 April 2016

    Fund Project: the Natural Science Foundation of Fujian Province (No.2016J01063), the Program for New Century Excellent Talents in Fujian Province No.2016J01063the University Distinguished Young Research Talent Training Program of Fujian Province No. 11FJPY02and the Promotion Program for Young and Middle-Aged Teacher in Science and Technology Research of Huaqiao University No. ZQN-YX103Project supported by the National Natural Science Foundation of China No. 21004024the Program for New Century Excellent Talents in Fujian Province No. 2012FJ-NCET-ZR03

Figures(4)

  • A series of propargylic amines were synthesized from terminal alkynes, dichloromethane and organic amines by using waste crab shell powders supported-CuI (CSPs-CuI) as catalyst. Using waste crab shell powders as catalyst support, not only resolve the problem of environment pollution and resources waste, but also produce propargylic amines through a highly efficient and green method. CSPs-CuI was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TG) and atomic absorption spectroscopy (AAS). The reaction conditions were optimized by the investigation of catalyst support and base types. The propargyllic amines were obtained readily in intermediate to excellent yields under the optimal reaction condition. CSPs-CuI showed good reusability and could be recovered easily through filtration and washing. It was reused at least 4 times without obvious loss of catalytic performance.
  • 加载中
    1. [1]

      Naota, I.; Takaya, H.; Murahashi, S. I. Chem. Rev. 1998, 98, 2599. 

    2. [2]

      Wei, C. M.; Li, C. J. J. Am. Chem. Soc. 2003, 125, 9584. 

    3. [3]

      Wei, C. M.; Mague, J. T.; Li, C. J. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5749. 

    4. [4]

      Li, C. J. Acc. Chem. Res. 2010, 43, 581. 

    5. [5]

      Zhang, X.; Corma, A. Angew. Chem., Int. Ed. 2008, 47, 4358. 

    6. [6]

      Cao, K.; Zhang, F. M.; Tu, Y. Q.; Zhu, X. T.; Fan, C. A. Chem.-Eur. J. 2009, 15, 6332. 

    7. [7]

      Ohta, Y.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2009, 11, 1979.

    8. [8]

      Sugiishi, T.; Kimura, A.; Nakamura, H. J. Am. Chem. Soc. 2010, 132, 5332. 

    9. [9]

      Murai, T.; Mutoh, Y.; Ohta, Y.; Murakami, M. J. Am. Chem. Soc. 2004, 126, 5968. 

    10. [10]

      Jordan, S.; Starks, S. A.; Whatley, M. F.; Turlington, M. Org. Lett. 2015, 17, 4842.

    11. [11]

      Aubrecht, K. B.; Winemiller, M. D.; Collum, D. B. J. Am. Chem. Soc. 2000, 122, 11084. 

    12. [12]

      Magueur, G.; Crousse B.; Bonnet-Delpon, D. Tetrahedron Lett. 2005, 46, 2219.

    13. [13]

      Zhang, K.; Huang, Y.; Chen, R. Tetrahedron Lett. 2010, 51, 5463.

    14. [14]

      Rubio-Prez, L.; Iglesias, M.; Munarriz, J.; Polo, V.; Torrente, J. J. P.; Oro, L. A. Chem. Eur. J. 2015, 21, 17701. 

    15. [15]

      Xiong, X. Q.; Chen, H. X.; Zhu, R. J. Chin. J. Catal. 2014, 35, 2006. 

    16. [16]

      Xiong, X. Q.; Chen, H. X.; Zhu, R. J. Catal. Commun. 2014, 54, 94. 

    17. [17]

      Aguilar, D.; Contel, M.; Urriolabeitia, E. P. Chem.-Eur. J. 2010, 16, 9287. 

    18. [18]

      Chen, X.; Chen, T.; Zhou, Y.; Au, C. T.; Hana, L. B.; Yin, S. F. Org. Biomol. Chem. 2014, 12, 247. 

    19. [19]

      Tang, Y.; Xiao, T.; Zhou, L. Tetrahedron Lett. 2012, 53, 6199.

    20. [20]

      Rahman, M.; Bagdi, A. K.; Majee A.; Hajra A. Tetrahedron Lett. 2011, 52, 4437. 

    21. [21]

      Lanke, S. R.; Bhanage, B. M. Appl. Organomet. Chem. 2013, 27, 729. 

    22. [22]

      Berrichi, A.; Bachir, R.; Benabdallah, M.; Choukchou-Braham, N. Tetrahedron Lett. 2015, 56, 1302.

    23. [23]

      Zeng, T.; Chen, W. W.; Cirtiu, C. M.; Moores, A.; Song, G.; Li, C. J. Green Chem. 2010, 12, 570. 

    24. [24]

      Sharma, R. K.; Sharma, S.; Gaba, G. RSC Adv. 2014, 4, 49198.

    25. [25]

      Karimi, B.; Gholinejad, M.; Khorasani, M. Chem. Commun. 2012, 48, 8961.

    26. [26]

       

    27. [27]

      Movassagh, B.; Rezaei, N. New J. Chem. 2015, 39, 7988.

    28. [28]

      Nasir Baig, R. B.; Varma, R. S. Green Chem. 2013, 15, 1839. 

    29. [29]

       

    30. [30]

      Qiu, Y. F.; Qin, Y. Y.; Ma, Z.; Xia, W. J. Chem. Lett. 2014, 43, 1284. 

    31. [31]

      Xiong, X. Q.; Cai, L.; Jiang, Y. B.; Han, Q. ACS Sustainable Chem. Eng. 2014, 2, 765.

    32. [32]

      Xiong, X. Q.; Chen, H. X.; Zhu, R. J. Chin. J. Catal. 2014, 35, 2006. 

  • 加载中
    1. [1]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    2. [2]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    3. [3]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    4. [4]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    5. [5]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    6. [6]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    7. [7]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    8. [8]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    9. [9]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    10. [10]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    11. [11]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    12. [12]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    15. [15]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    16. [16]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    17. [17]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    19. [19]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    20. [20]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

Metrics
  • PDF Downloads(0)
  • Abstract views(993)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return