Citation: Guan Baochuan, Xu Xiaoliang, Wang Hong, Li Xiaonian. Progress on the Decarboxylation Coupling Reaction Mediated by Visible Light[J]. Chinese Journal of Organic Chemistry, ;2016, 36(7): 1564-1571. doi: 10.6023/cjoc201601012 shu

Progress on the Decarboxylation Coupling Reaction Mediated by Visible Light

  • Corresponding author: Xu Xiaoliang, xuxiaoliang@zjut.edu.cn Wang Hong, chem_hong@163.com
  • Received Date: 11 January 2016
    Revised Date: 17 February 2016

    Fund Project: the Natural Science Foundation of Zhejiang Province No. LY15B020004

Figures(9)

  • Visible light mediated coupling reaction has obtained the widespread attention in recent years, and has been a most efficient method for building new C—C and C—X bonds. The development of visible light catalytic system also has provided a new means for decarboxylation reaction. Lots of studies on visible light catalytic decarboxylation reaction were published recently. In this paper, the visible light mediated decarboxylation reactions in recent years are briefly reviewed.
  • 加载中
    1. [1]

      Weaver, J. D; Recio, A; Grenning, A. J; Tunge, J. A. Chem. Rev. 2011, 111, 1846. 

    2. [2]

      Baudoin, O. Angew. Chem., Int. Ed. 2007, 46, 1373; 

    3. [3]

      Li, Z.; Jiang, Y. Y; Yeagley, A. A.; Bour, J. P.; Liu, L.; Chruma, J. J.; Fu, Y. Chem. Eur. J. 2012, 18, 14527. 

    4. [4]

      Burger, E. C.; Tunge, J. A. J. Am. Chem. Soc. 2006, 128, 10002. 

    5. [5]

      Yeagley, A. A.; Chruma, J. J. Org. Lett. 2007, 9, 2879. 

    6. [6]

      Xie, J.; Jin, H.; Xu, P.; Zhu, C. Tetrahedron Lett. 2014, 55, 36.

    7. [7]

      Chen, J.; Cen, J.; Xu, X. L.; Li, X. N. Catal. Sci. Technol. 2016, 6, 349. 

    8. [8]

      Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.

    9. [9]

      Nagib, D. A.; Scott, M. E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 10875. 

    10. [10]

      Pirnot, M. T.; Rankic, D. A.; Martin, D. B. C.; MacMillan, D. W. C. Science 2013, 339, 1593.

    11. [11]

      McNally, A.; Prier, C. K.; MacMillan, D. W. C. Science 2011, 334, 1114.

    12. [12]

      Shih, H. W.; Wal, M. N. V.; Grange, R. L.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 13600. 

    13. [13]

      Jeffrey, J.; Petronijevic, F. R.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 8404. 

    14. [14]

      Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 12886. 

    15. [15]

      Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2009, 131, 14604. 

    16. [16]

      Lin, S.; Ischay, M. A.; Fry, C. G.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 19350. 

    17. [17]

      Lu, Z.; Yoon, T. P. Angew. Chem., Int. Ed. 2012, 51, 10329. 

    18. [18]

      Blum, T. R.; Zhu, Y.; Nordeen, S. A.; Yoon, T. P. Angew. Chem., Int. Ed. 2014, 53, 11056. 

    19. [19]

      Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2009, 131, 8756. 

    20. [20]

      Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102. 

    21. [21]

      Condie, A. G.; Gonzalez-Gomez, J. C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2010, 132, 1464. 

    22. [22]

      Freeman, D. B.; Furst, L.; Condie, A. G.; Stephenson, C. R. J. Org. Lett. 2012, 14, 94. 

    23. [23]

      Xuan, J.; Cheng, Y.; An, J.; Lu, L. Q.; Zhang, X. X.; Xiao, W. J. Chem. Commun. 2011, 47, 8337. 

    24. [24]

      Zou, Y. Q.; Guo, W.; Liu, F. L.; Lu, L. Q.; Chen, J. R.; Xiao, W. J. Green Chem. 2014, 16, 3787. 

    25. [25]

      Xuan, J.; Xia, X. D.; Zeng, T. T.; Feng, Z. J.; Chen, J. R.; Lu, L. Q.; Xiao, W. J. Angew. Chem., Int. Ed. 2014, 53, 5633.

    26. [26]

      Xie J.; Xu P.; Li, H.; Xue, Q.; Jin, H.; Cheng, Y.; Zhu, C. Chem. Commun. 2013, 49, 5672.

    27. [27]

      Xuan, J.; Zhang, Z. G.; Xiao, W. J. Angew. Chem., Int. Ed. 2015, 54, 15632. 

    28. [28]

      Zuo, Z.-W.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136, 5257 

    29. [29]

      Lloyd-Jones, G. C.; Ball, L. T. Science 2014, 345, 381. 

    30. [30]

      Terrett, J. A.; Cuthbertson, J. D.; Shurtleff1, V. W.; MacMillan, D. W. C. Nature 2015, 524, 330. 

    31. [31]

      Hopkinson, M. N.; Sahoo, B.; Glorius, F. Adv. Synth. Catal. 2014, 356, 2794. 

    32. [32]

      Tellis, J. C. Primer, D. N.; Molander, G. A. Science 2014, 345, 433. 

    33. [33]

      Cai, S.Y.; Yang, K.; Wang, D. Z. Org. Lett. 2014, 16, 2606. 

    34. [34]

      Choi, S.; Chatterjee, T.; Choi, W. J.; You, Y.; Cho, D. E. J. ACS Catal. 2015, 5, 4796. 

    35. [35]

      Shu, X. Z.; Zhang, M.; He, Y.; Frei, H.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 5844. 

    36. [36]

      Anderson, A. J. M.; Koehi, J. K. J. Am. Chem. Soc. 1970, 92, 1651. 

    37. [37]

      Miller, J. A.; Nelson, J. A.; Byrne, M. P. J. Org. Chem. 1993, 58, 18. 

    38. [38]

      Samuel, C.; Simone, T.; Mueller, J.; Jerome, L. Angew. Chem., Int. Ed. 2007, 46, 2082. 

    39. [39]

      Burger, E. C.; Tunge. J. A. Chem. Commun. 2005, 2835.

    40. [40]

      Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Science 2014, 345, 437.

    41. [41]

      Oderinde, M. S.; Varela-Alvarez, A.; Aquila, B.; Robbins, D. W.; Johannes, J. W. J. Org. Chem. 2015, 80, 7642. 

    42. [42]

      Chu, L.; Lipshultz, J. M.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2015, 54, 7929. 

    43. [43]

      Cheng, W. M.; Shang, R.; Yu, H. Z.; Fu, Y. Chem. Eur. J. 2015, 21, 13191. 

    44. [44]

      Noble, A.; McCarver, S. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 624. 

    45. [45]

      Zou, Y. Q.; Duan, S. W.; Meng, X. G.; Hu, X. Q.; Gao, S.; Chen, J. R. Xiao, W. J. Tetrahedron 2012, 68, 6914. 

    46. [46]

      Tucker, J. W.; Narayanam, J. M. R.; Krabbe, S. W.; Stephenson, C. R. J. Org. Lett. 2010, 12, 368. 

    47. [47]

      Furst, L.; Matsuura, B. S.; Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. Org. Lett. 2010, 12, 3104. 

    48. [48]

      Furst, L.; Narayanam, J. M. R.; Stephenson, C. R. J. Angew. Chem., Int. Ed. 2011, 50, 9655. 

    49. [49]

      Ju, X.; Liang, Y.; Jia, P.; Li, W.; Yu, W. Org. Biomol. Chem. 2012, 10, 498. 

    50. [50]

      Maity, S.; Zheng, N. Angew. Chem., Int. Ed. 2012, 51, 9562. 

    51. [51]

      Chen, M.; Huang, Z. T.; Zheng, Q. Y. Chem. Commun. 2012, 48, 11686. 

    52. [52]

      Fu, W.; Xu, F.; Fu, Y.; Zhu, M.; Yu, J.; Xu, C.; Zou, D. J. Org. Chem. 2013, 78, 12202. 

    53. [53]

      Zhang, P.; Xiao, T.; Xiong, S.; Dong, X.; Zhou, L. Org. Lett. 2014, 16, 3294.

    54. [54]

      Gu, L.; Jin, C.; Liu, J.; Zhang, H.; Yuan, M.; Li, G. Green Chem. 2016, 18, 1201.

    55. [55]

      Noble, A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136, 11602 

    56. [56]

      Huang, H.; Jia, K.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 1881. 

    57. [57]

      Rueping, M.; Koenigs, R. M.; Poscharny, K.; Fabry, D. C. Leonori, D.; Vila, C. Chem. Eur. J. 2012, 18, 5170. 

    58. [58]

      Adrian, T. A.; Matthew, N. H.; Basudev, S.; Frank, G. Chem. Sci. 2016, 7, 89.

    59. [59]

      Kim, S.; Martin, J. R.; Toste, F. D. Chem. Sci. 2016, 7, 85. 

    60. [60]

      Yang, J.; Zhang, J.; Qi, L.; Hu, C.; Chen, Y. Chem. Commun. 2015, 51, 5275.

    61. [61]

      Huang, H.; Zhang, G.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 7872. 

    62. [62]

      Zhou, Q. Q.; Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, L. Q.; Xiao, W. J. Angew. Chem., Int. Ed. 2015, 54, 11196. 

    63. [63]

      Guo, W.; Lu, L. Q.; Wang, Y.; Wang, Y. N.; Chen, J. R.; Xiao, W. J. Angew. Chem., Int. Ed. 2015, 54, 2265. 

    64. [64]

      Majek, M.; Wangelin, A. J. Angew. Chem., Int. Ed. 2015, 54, 2270. 

    65. [65]

      Vaillant, F. L.; Courant, T.; Waser, J. Angew. Chem., Int. Ed. 2015, 54, 11200. 

    66. [66]

      Tan, H.; Li, H.; Ji, W.; Wang, L. Angew. Chem., Int. Ed. 2015, 54, 8374. 

    67. [67]

      Miyake, Y.; Nakajima, K.; Nishibayashi, Y. Chem. Commun. 2013, 49, 7854.

    68. [68]

      Chu, L.; Ohta, C.; Zuo, Z.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136, 10886. 

    69. [69]

      Lackner, G. L.; Quasdorf, K. W.; Overman, L. E. J. Am. Chem. Soc. 2013, 135, 15342. 

    70. [70]

      Lackner, G. L.; Quasdorf, K. W.; Pratsch, G.; Overman, L. E. J. Org. Chem. 2015, 80, 6012. 

    71. [71]

      Nawrat, C. C.; Jamison, C. R.; Slutskyy, Y.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 11270. 

    72. [72]

      Wang, G. Z.; Shang, R.; Cheng, W. M.; Fu, Y. Org. Lett. 2015, 17, 4830.

    73. [73]

      Ji, W.; Tan, H.; Wang, M.; Li, P.; Wang, L. Chem. Commun. 2016, 52, 1201.

    74. [74]

      Lang, S. B.; O'Nele, K. M.; Tunge, J. A. J. Am. Chem. Soc. 2014, 136, 13606. 

    75. [75]

      Lang, S. B.; ONele, K. M.; Douglas, J. T.; Tunge, J. A. Chem. Eur. J. 2015, 21, 18589. 

    76. [76]

      Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.

    77. [77]

      Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2015, 54, 3216. 

    78. [78]

      Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. 

    79. [79]

      Nagib1, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224. 

    80. [80]

      Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 2012, 134, 9034. 

    81. [81]

      Sahoo, B.; Li, J. L.; Glorius, F. Angew. Chem., Int. Ed. 2015, 54, 11577. 

    82. [82]

      Su, Y. M.; Hou, Y.; Yin, F.; Xu, Y. M.; Li, Y.; Zheng, X.; Wang, X. S. Org. Lett. 2014, 16, 2958. 

    83. [83]

      Tomita, R.; Yasu, Y.; Koike, T.; Akita, M. Angew. Chem., Int. Ed. 2014, 53, 7144. 

    84. [84]

      Wolf, M. O.; Sammis, G. M.; Paquin, J. F. J. Am. Chem. Soc. 2014, 136, 2637. 

    85. [85]

      Ventre, S.; Petronijevic, F. R.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 5654. 

    86. [86]

      Wu, X.; Meng, C.; Yuan, X.; Jia, X.; Qian, X.; Ye. J. Chem. Commun. 2015, 51, 11864.

    87. [87]

      Cassani, C.; Bergonzini, G.; Wallentin, C. J. Org. Lett. 2014, 16, 4228. 

    88. [88]

      Nguyen, T. M.; Nicewicz, D. A. J. Am. Chem. Soc. 2013, 135, 9588. 

    89. [89]

      Nguyen, T. M.; Manohar, N.; Nicewicz, D. A. Angew. Chem., Int. Ed. 2014, 53, 6198. 

    90. [90]

      Romero, N. A.; Nicewicz, D. A. J. Am. Chem. Soc. 2014, 136, 17024. 

    91. [91]

      Morse, P. D.; Nicewicz, D. A. Chem. Sci. 2015, 6, 270. 

    92. [92]

      Griffin, J. D.; Zeller, M. A.; Nicewicz, D. A. J. Am. Chem. Soc. 2015, 137, 11340. 

    93. [93]

      Liu, J.; Liu, Q.; Yi, H.; Qin, C.; Bai, R.; Qi, X.; Lan, Y. Lei, A. Angew. Chem., Int. Ed. 2014, 53, 502. 

  • 加载中
    1. [1]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    2. [2]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    3. [3]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    4. [4]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    6. [6]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    7. [7]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    8. [8]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    9. [9]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    10. [10]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    11. [11]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    12. [12]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    13. [13]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    14. [14]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    15. [15]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    16. [16]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    17. [17]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    18. [18]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    19. [19]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    20. [20]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

Metrics
  • PDF Downloads(0)
  • Abstract views(4068)
  • HTML views(1258)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return