Citation: He Jiangqi, Lou Shaojie, Xu Danqian. Recent Advances in Transition-Metal Catalyzed C—H Bond Fluorination[J]. Chinese Journal of Organic Chemistry, ;2016, 36(6): 1218-1228. doi: 10.6023/cjoc201512040 shu

Recent Advances in Transition-Metal Catalyzed C—H Bond Fluorination

  • Corresponding author: Xu Danqian, chrc@zjut.edu.cn
  • Received Date: 26 December 2015
    Revised Date: 25 January 2016

    Fund Project: the China Postdoctoral Science Foundation No.2014M560494Project supported by the National Natural Science Foundation of China No.21361130021

Figures(17)

  • Organofluorine compounds are widely found in pharmaceuticals, agrochemicals, and materials due to their special properties. However, development of transformations to incorporate fluorine atom is usually a great challenge, because of its highly electronegative nature. Transition-metal catalyzed C—H bond fluorination has significant advantages in atom-economy, reaction diversity and environmental friendliness in comparison with the traditional transition-metal catalyzed cross-coupling approaches since it obviates the use of pre-functionalized substrates. In the past decade, C—H bond fluorination strategy has emerged as a powerful protocol to access new C—F bonds. This review presents the state of art for transition-metal catalyzed C—H bond fluorination. The existing problems and limitations of the field are summarized and the outlook of the area is also prospected.
  • 加载中
    1. [1]

       

    2. [2]

      O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308. 

    3. [3]

      Brooks, A. F.; Topczewski, J. J.; Ichiishi, N.; Sanford, M. S.; Scott, P. J. H. Chem. Sci. 2014, 5, 4545. 

    4. [4]

      Watson, D. A.; Su, M. J.; Teverovskiy G.; Zhang, Y.; García-Forta- net, J.; Kinzel T.; Buchwald, S. L. Science 2009, 325, 1661. 

    5. [5]

      Lee, H. G.; Milner, P. J.; Buchwald, S. L. J. Am. Chem. Soc. 2014, 136, 3792. (b) Milner, P. J.; Yang, Y.; Buchwald, S. L. Organometallics 2015, 34, 4775. (c) Sather, A. C.; Lee, H. G.; De La Rosa, V. Y.; Yang, Y.; Müller, P.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 13433. 

    6. [6]

      Furuya, T.; Ritter, T. Org. Lett.. 2009, 11, 2860.

    7. [7]

      Furuya, T.; Strom, A. E.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 1662. 

    8. [8]

      Tang, P. P.; Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 12150. 

    9. [9]

      Tang, P. P.; Ritter, T. Tetrahedron 2011, 67, 4449. 

    10. [10]

      Fier, P. S.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 10795. 

    11. [11]

      Fier, P. S.; Luo, J. W.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 2552. 

    12. [12]

      Ye, Y. D.; Sanford, M. S. J. Am. Chem. Soc. 2013, 135, 4648. 

    13. [13]

      Ye, Y. D.; Schimler, S. D.; Hanley, P. S.; Sanford, M. S. J. Am. Chem. Soc. 2013, 135, 16292. 

    14. [14]

      Ichiishi, N.; Canty, A. J.; Yates, B. F.; Sanford, M. S. Org. Lett. 2013, 15, 5134. 

    15. [15]

      Tredwell, M.; Preshlock, S. M.; Taylor, N. J.; Gruber, S.; Huiban, M.; Passchier, J.; Mercier, J.; Génicot, C.; Gouverneur, V. Angew. Chem., Int. Ed. 2014, 53, 7751. 

    16. [16]

      Ichiishi, N.; Brooks, A. F.; Topczewski, J. J.; Rodnick, M. E.; Sanford, M. S.; Scott, P. J. H. Org. Lett. 2014, 16, 3224. 

    17. [17]

      Mu, X.; Zhang, H.; Chen, P. H.; Liu, G. S. Chem. Sci. 2014, 5, 275. 

    18. [18]

    19. [19]

      Ball, N. D.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 3796. 

    20. [20]

      Furuya, T.; Kaiser, H. M.; Ritter, T. Angew. Chem., Int. Ed. 2008, 47, 5993. (b) Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2008, 130, 10060. (c) Furuya, T.; Benitez, D.; Tkatchouk, E.; Strom, A. E.; Tang, P. P.; Goddard, W. A.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 3793. 

    21. [21]

      Lee, E.; Hooker, J. M.; Ritter, T. J. Am. Chem. Soc. 2012, 134, 17456. 

    22. [22]

      Xu, L. M.; Li, B. J.; Yang, Z.; Shi, Z. J. Chem. Soc. Rev. 2010, 39, 712. (b) Engle, K. M.; Mei, T. S.; Wang, X.; Yu, J. Q. Angew. Chem., Int. Ed. 2011, 50, 1478. 

    23. [23]

      Hull, K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 7134. 

    24. [24]

      Wang, X. S.; Mei, T. S.; Yu, J. Q. J. Am. Chem. Soc. 2009, 131, 7520. 

    25. [25]

      Chan, K. S. L.; Wasa, M.; Wang, X. S.; Yu, J. Q. Angew. Chem., Int. Ed. 2011, 50, 9081. 

    26. [26]

      Chen, C. P.; Wang, C.; Zhang, J. Y.; Zhao, Y. J. Org. Chem. 2015, 80, 942. 

    27. [27]

      Lou, S. J.; Xu, D. Q.; Xia, A. B.; Wang, Y. F.; Liu, Y. K.; Du, X. H.; Xu, Z. Y. Chem. Commun. 2013, 49, 6218. 

    28. [28]

      Ding, Q. P.; Ye, C. Q.; Pu, S. Z.; Cao, B. P. Tetrahedron 2014, 70, 409. 

    29. [29]

      Testa, C.; Roger, J.; Scheib, S.; Fleurat-Lessard, P.; Hierso, J. C. Adv. Synth. Catal. 2015, 357, 2913. 

    30. [30]

      Lou, S. J.; Xu, D. Q.; Xu, Z. Y. Angew. Chem., Int. Ed., 2014, 53, 10330. 

    31. [31]

      Camasso, N. M.; Peérez-Temprano, M. H.; Sanford, M. S. J. Am. Chem. Soc. 2014, 136, 12771. 

    32. [32]

      Lou, S. J.; Chen, Q.; Wang, Y. F.; Xu, D. Q.; Du, X. H.; He, J. Q.; Mao, Y. J.; Xu, Z. Y. ACS Catal. 2015, 5, 2846. 

    33. [33]

      Truong, T.; Klimovica, K.; Daugulis, O. J. Am. Chem. Soc. 2013, 135, 9342. 

    34. [34]

      Kaspi, A. W.; Goldberg, I.; Vigalok, A. J. Am. Chem. Soc. 2010, 132, 10626. 

    35. [35]

      Mankad, N. P.; Toste, F. D. Chem. Sci. 2012, 3, 72. 

    36. [36]

      Racowski, J. M.; Gary, J. B.; Sanford, M. S. Angew. Chem., Int. Ed. 2012, 51, 3414. (b) Peérez-Temprano, M. H.; Racowski, J. M.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2014, 136, 4097. 

    37. [37]

      McMurtrey, K. B.; Racowski, J. M.; Sanford, M. S. Org. Lett. 2012, 14, 4094. 

    38. [38]

      Zhu, R. Y.; Tanaka, K.; Li, G. C.; He, J.; Fu, H. Y.; Li, S. H.; Yu, J. Q. J. Am. Chem. Soc. 2015, 137, 7067. 

    39. [39]

      Zhang, Q.; Yin, X. S.; Chen, K.; Zhang, S. Q.; Shi, B. F. J. Am. Chem. Soc. 2015, 137, 8219. 

    40. [40]

      Miao, J. M.; Yang, K.; Kurek, M.; Ge, H. B. Org. Lett. 2015, 17, 3738. 

    41. [41]

      Zhu, Q. H.; Ji, D. Z.; Liang, T. T.; Wang, X. Y.; Xu, Y. G. Org. Lett. 2015, 17, 3798. 

    42. [42]

      Fier, P. S.; Hartwig, J. F. Science 2013, 342, 956. 

    43. [43]

      Bloom, S.; Pitts, C. R.; Miller, D. C.; Haselton, N.; Holl, M. G.; Urheim, E.; Lectka, T. Angew. Chem., Int. Ed. 2012, 51, 10580. 

    44. [44]

      Bloom, S.; Pitts, C. R.; Woltornist, R.; Griswold, A.; Holl, M. G.; Lectka, T. Org. Lett. 2013, 15, 1722.

    45. [45]

      Liu, W.; Huang, X. Y.; Cheng, M. J.; Nielsen, R. J.; Goddard, W. A.; Groves, J. T. Science 2012, 337, 1322 

    46. [46]

      Liu, W.; Groves, J. T. Angew. Chem., Int. Ed. 2013, 52, 6024. 

    47. [47]

      Braun, M. G.; Doyle, A. G. J. Am. Chem. Soc. 2013, 135, 12990. 

  • 加载中
    1. [1]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    2. [2]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    3. [3]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    4. [4]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    8. [8]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    11. [11]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    15. [15]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    16. [16]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    17. [17]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    18. [18]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    19. [19]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    20. [20]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(0)
  • Abstract views(4292)
  • HTML views(1123)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return